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FOREWORD

This document iz & technical summery of progress made since May,
1970, by the Auburn University Electricsl Engineering Department toward
fulfillment of contract NAS8-11274. This contraet was granted to the
Engineering Experiment Station, Auburn, Alabama, by the George C.
Marshall Space Flight Center, National Aeronautics and Space Admini-

stration, Huntsville, Alasbama.
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A FREQUENCY RESPONSE METHCD FOR THE ANALYSIS
AND DESIGN OF MULTIRATE SAMPLED-DATA SYSTEMS

C. L. Phillipas and H. E. Crisp

ABSTRACT

Single~lcop, linear, multirate sampled-dats systems szud muliiple
input-multiple output, linear, multirate sampled-dats systeme are both
considered. For the single~loop case, 8 Bode plot design techmique
based on a bilinear transformation ié presented. From the Bode plot
procedure, an upper bound for the choice of the multifate n is deter~
mined., A procedure for obtaining the Bode plot for the uncompensated
multirate open-lioop transfer function from the equivalent slow single
rate transfer function is also developed.

For the multiple input-multiple output case, a known technique for
continuous systems is extended to multirate sampled-data systems. An
open~-loop frequency response design technique is then developed. Ini-
tially, two input-two output systems are comsidered. The technique is

then extended to the general m input-m output case.
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1. Introduction

Apslysis and design techniques for single input-single ocutput, sin-
gle rate sampled-~data systems are well defimed [1]. Thesa technigques ave
bzeed either on a z-transform representation of the eystem oy a differ-
ence equstion representation and range from the root-locus and frequency
domain approaches ¢o the optimal aspprxoach. Of these various approaches,
the frequency domain technique for digital controller design has proved
extremely effective for linear sampied-dats esysteme.

It is the .objective of Chapter III to present a frequency response
design technigue for single input-gingle output, multirate sampled-data
systems. Such systems cccur when the digital comtroller provides output
information #t a rate different from the basic system sampling rate. The
design technique which is presented is applicable to linear systems for
which the sampling operation is represented by an inpulse modulator fol-
lowed by & zerco~order hold [l]. Also, the fast-rate sampling must be an
integer multiple of the slow-rate sampling frequency. The technique
uvtilizes a bilinear transformation which snsbles ome to employ a Bede
plot design procedure. Ales, zm upper boudma fov the salection of the
zatio of sampling frequenuies, n, . developad.

Iz conjunction with ihe Jovelovment of the frequency response design
techoigue, the digitsl cewsmuisidsn of the awuitirate system frequency
response is discuesed. The Lofinize sevies fsim of the s~vomain wmulti-
rate system tvensfer Jonction is deve.owed {or tnis pyrpose. Finally, a

1



multirate system identity iz presented to zssist in determining the z, -
forn of the multirate syvstem transfer function. This identity is uvii-
iized to determine the multivate system output for a quantization dis-
turbance at the digital contyoller output accumulator.

The subject of mulitiple input-multiple cubput systems is considered
in Chapter IV. It is the objective of this chapter to investigate pri-
marily the case of twe snd three inputs and outputs. Inltially, the me-
thod of Povejsil and Fuechs [11] for comtinuous~data systems i3 extended
to multirate, three input-three output systems. The disadvantages of
this technique are discussed. An open—-loop frequency response design
technique is tﬁen developed for two input—-two output, continucus-data
systems. This technique provides for approximately decoupling the sys-
tem, as well as meeting the usual design specifications. The analytical
basis for the technique which is presented is the Nyquist criterion [16].
After presenting an example to illustrate the open—~loop technique, an
extension is_madé to single~rate, and then multirate, two input-~two out-
put, sampledwdata systems. A second example is presented to illustrate
the open»loop frequency response technique for multirate, two input=-two
output, sampled-data systems.

The open-lcop technique is extended in Chapter V to systems having
more thean two inputs and fwe ovtputs. Trir extension sets forth proce-
dures for obtaining open-laos transier functiansg for determining the
open~ioep poles which lie outside #he unit civele in the multirate z-

plape, and for determising the compeunmatiom iv sach channel of the
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general n input-n output eystem. These procedures are illustrated by

epplication to 2 three ioput-three output, wultivate ssmpled-datz systenm.
Preliminary to Chaptexs III, IV, and V, Chapter II contains a iit-

eratuve survey. This survay covers muliivats ssmpled-date gystems and

multiple iwput-multiple cutput aystems.



iL. LITERATURE SURVEY

It is the intent of this literature survay to discuss the important
sontyibutions te the frequency response design tachnigue for multirate
digital controllers snd, also, to discuss the more important develop-
ments in the snalveis and design of multiple input-multiple output sys-

tems.

A. Frequency Reaponse Design Techmique
for Multirate Digital Controllers

The design of g multirate digital controller was first consildeved
by Kranc [2]. Krane argued the case for utilizing a multirate control-
ler on the basis of reducing ripple error between sampling instants and
improving the settling time for a step input. The improvement in ripple
performance is based on the assumption of zero steadfwstate error being
desired at the ssmple instants. Kranc showed that, generally, these
advantages Eould be gained at no increase in the number of storage ele~-
ments in the controller. The improvement in ripple performance was shown
to hold for inputs whose Larlace tyuuz2fvyas vy o7 the type 1/sk.

Kranc®s work was based on 2 winglse loop Llinesr system with a digital
contrelier havimg 2 slow-rate dfnpud znd 2 fagt-rate output. The desired

digitsl comivoller tramsfer function was determined according to



r . Kz,
6(zy) 1~ K(zD)

D(zn} & (I.I:‘”l)

where Q(zn) iz the plant transfer function, K(z,) is the system transfer
function from inputr o output, and z, is £$T/na Kranc developed a teble
of “minimum setrtling time prototypes” which aasured a zero stesdy-state
error for inputs of the type 1/sK. The disadvantage of Kranc's technique
is that for inputs other than the design input, the system performance

is generally unsatisfactory {6].

Shortly after this first article, Kranc introduced his switch de-
composition technique for imput-ocutput analysis of multirate sampled-
data systems. This techinique replaces each switch in‘the system which
operates at an integer multiple of the basic system sampling frequency
by a set of switches operating at the basic system sampling frequency,
each switch having advance and delay elements. The disadvantage of
this technique is that it is extremely unwieldy fo? comﬁlex systems.

Kalwman and Bertram intreduced a state space approach to the theory
of sampled-dats systems [4]. Their approach provides a means for ana-
lyzing nonconventional as well as conventional sampled-data systems.
This is dorme by obtaining a discrets siate ﬁaﬁmsiﬁiom matrix for the
eptire system. The dirszdvantags ~f this method for multirate sampled-
datz systems is thal the discreis atate wariable descriptiom‘of melei-
vate gystems is extvemelv somplox.

& possible fveguemcy domsin desige toobedigue for multivate digital

contrclliers was fivaet proposed by ihuliips e¢nd Jehmsoa §5). The besic



system considered by Phillips and Johnson ie the singls loop, linesx
system for which the output sampling rate of the digital controller is
an Iinteger multiple of the input sampling rate. For such a system, a

z,~form open-locp transfer fumction is developedo This transfer func-

tion is of the fars
C{z.) 5 ol
2 ﬁ- z B(z, sj¢P}G(z ed%) (I1-2)

E(z,) ~ p=0

where C(zn) is the multirate system output, E(zn) is ﬁultirate error,
G(zy) is the plant transfer function, and D(zn) is the digital control-
ler. Also, n is the integer ra;io of the fast-rate sampling frequency
to the slow-rate sampling frequency, ¢p ié 2rp/n, and z, is eTs/n, The
Nyquist diagram [16] is obtained for (II-2) by allowing z, to vary along

the unit circle in the z -plane [1]. For the multirate system, it is

shown that the Nyquist criterion becomes
zZ =l + P) s (11-3)

where 2 is the number of zercves of ths zvwstsw aharsctervistic esguation
that lie outaide the unift sizele Iin the znwplame? P is the pumber of
polaz that lie cutside the wele circis, and ¥ iz che number of enciy-
clemeznte of the -1 polnt wade by the ¥youist diagraw. It is noted that

one problen assocliated wiih the open-is0% Lrsneley

=y

amction of {(TL-2)

e chat it da sot possitls to factor out tng coapansativn function.



Knowles and Edwarde also considered the single loop, linear sampled-
data system in terms of comparing the multirstz system vipple error and
aquantization error performance against the single rate systém perfor-
mance. Koowles and Edwards developed a fraqueney»damain cloged-loop
systen tranefer function, for which the open-~loop trausfexr fuﬁctian ie
equivalent to ({I-Z). An spproximste transfer function was then davel-
oped which consisted of the first term of (II-2). This approximate
transfer function was justified on the basis of the necessity in actual
practice of msking the open-loop transfer function low-pass with reaspect
tc the system slow-rate sampling frequency in order to attenmuate the
frequency sidebands inherently present in the sampled output of the com-
puter at frequency multiples of 2w/T rad/sec. Using the approximate
transfer function, Knowles and Edwards were able to show that for a
phase~lead compensation and a sinusoidal input, the multirate system
ripple error_performance was inferlor to that of the single rate system.
No comclusions could be made conggrning quantization error performsance.

Phillips presented a frequency response design technique for multi-
rate digital controllers for the case that the system ies not low-pass
with respect to the slow-rate sampling frequency [7]. This technique is
based on the observation thet =ach ters of the sum of (II-2) is only the
first term, D(z,)G(z,), for z, shifrad aleng the unit cirele. Hence, if
G(z,) contains vesonant wodes iov frequencies greater than ome-half the
slow-yate sampling frequency, the wmapmsy in which these vesonant modes

affect the multivaze systen’s fresuency responss may bae obssyved., If



A

compensation iz required in & frequency range grester than one-half the
glow-rate sampling frequency, the manner in which the compensator affects
each term of (1I~2) msy be seen and the compensator le designed accord~

ingly.

B. HMultiple Input-Multiple Cutput Systems.

in effective design procedure for multiple input-multiple output
systems was first presented by Povejsil and Fuche [11]. The procedure
of Povejsil and Fuchs is presented for linear, continuous systems, for
which the system is characterized by n integro-differential equations
relating each of the comtrolled varisbles to the input forcing functions.
Given a set of performance specifications, it is assumed that the desired
s~domain charactéristic equation for the controlle& system is given or
may be deduced. The determinant of the uncontrolled system is then ob-
tained from the given system eguations and expanded to give a charac~
teristic equation of the form of the desired characterigtic equation.
Povejsil and Fuchs then set forth a synthesis procedure whereby the co-
efficients of the uncontrolled system characteristic equation are com-
pared with the coefficients of the desired system characteristic equa-
tion. Where these coefficients d4iffer, the orizinal system equations
are examined to determine tﬁ@‘camgemﬁaﬁisﬁ form which will establish
the desired value of the c@gffiﬁi@ntﬁ

The advantage of tge aéava technigue ig that the cross-coupling

terms do not complicate ity dnsdign, but raihee, way be helpful in



achieving the desired control. However, the procedure becomes extremely
complex for large systems. Alsc, in determining the desired form of
the compensations, conflicting requiremgnta ey be encountersd.

Newmazn intvoduced a frequancy-domain procedure for analyzing the
effects of cross-coupling terme in two impul-two sutpul, continuocus
syeteme [10}. HNewmen'’s analyeis showed the menney in which the intro-
duction of crosgs—coupling into an unstable system could stabilize the
system. Since Newman's design procedure assumes that the cross-coupling
terms ;am be manipulated, its usefulness is limited.

Chen, Mathias, and Sauter developed a Bode plot design procedure
for multiple input-multiple output systems which resulted in a decoupled
system. It is pointed out that by decoupling the system, the response
and d&ﬁamic characteristice of the system may be designed ome loop at a
time. The design procedure is based on a matrix definition of the sys-

tem, for which the net forward signal path matrix, N, is defined by
=P , (I1-4)

where P is the plant mazrix and G is the controller matrix. It is then
assumed that the compensated s -stem is dze.uplied, in which case N is a
diagonal matriz. The design apecifications such as steady-state error,
per cemnt overshoot, end bandwidth zie then tranclated into equivalent
Bode di&gta@gg from whick 2he diagonal alemenis of N wmay be specified.

The controlier ¢ is than sopwntred sccowrding o



iy

¢=?W . {1I=5)

The disadvantage of the sbove technique is that the elements of the
controller matrix must be computed, which if doune purely on the basis of
control specifications, may lead to elements of G having wore zerces than
poles. Further, the procedure in general leads to a controlier con~
taining cross-channel control elements.

The state-space approach to the design of multivariable systems was
éonsiderably enbanced by Falb and Wolovich, who first proved the neces-
sary and sufficient conditions for decoupling multivariable systems by
state feedback and by output feedback [13]. These conditions were later
proved in a more compact manner by Gilbert [14]. As has been previously
noted, the immediate difficulty in applying state space techniques to
meltirate aa@ple&udata systems is that the discrete state varlsble de-
scription of such a system is extremely complex.

Decoupling multivariable systems by state feedback iz not g gener-
ally practical approach, since the meghod requires that all the systenm
states be available. Whereas decoupling by output feedback is gemerally
more practical, Falb and Wolowvich show that the class of systems for
which this dis possible is considerably smaller tham the class ﬁhich may

be deccupled by state feedback,



III. A FREQUENCY RESPONSE DESIGN TECHNIQUE FOR SINGLE
INPUT-SINGLE OUTPUT, MULTIRATE

SAMPLED-DATA SYSTEMS.

Recently, some interest has arisen in the multirate {mcre than one
gampling rate present in the system) sampled-data system freaqueancy
response design technique [5] = [7]. Such systemg arise where data is
being received by the digital controller at one rate and processed at
a differeﬁt rate. The afore-mentioned references have discussed the
frequency response design technique for wmultirate digital comtrollers
in terms of the_zn-form of the mu;tirate sampled—-data system transfer
function. The basic system discussed in these references is shown 12

Figure III~l. The z,~form transfer function for this system is [5] -

[71:

1ol
C(z,) = ) D(z,exp(16,))G (2 exp (36,))
N p=0 , {111~1)
1 n-1
Rlzp) 1+= 2@ D(z exp {30,))6(z exp (3¢ ,))
p&
where
3
5 2B (111-2)

[
-
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- 2T s -
¢p ~ (111~3)
and
D(zexp (30,))6(z exp (34p)) = D(2)6(2) . (III-4)

T=T/n

z = zoexp(6)

In this chapter, & Bode plot design procedure for the sgystem of
Figure III~-1 is presented. This procedure allows for the observation
of the affect of the digital controller, D(z,), on each term of the n-
term summation in (I1I-1) from the Bode plot of the first term. In
addition, a technique is presented for obtaining éhe Bode plot for the
multirate open-loop transfer function from the Bode plot of the single-
rate open-loop transfer function. Also, an upper bound for the choice

of the multirate n is developed.

A. The Bilinear Transformastion.
The basis of the design technique which will be presented is the
bilinear transformation from *he znnpiam@ to a w.-plane by means of

the relation [1]

1 4w
4] PR
w o .:m.amwy-m o ‘I 1 ’,L-ra5)
LA z s W‘
- o



The result of this transformation is to take the region of stabillity
from the intericr of the unit circle in the znwplane to the entire lefi-
half of the wnaplaneg as shown in Figure III-2,

In order to apply the tremsformation, it is necessary to obtain
the w _~form of the multirate system characteristic equation. The
Myquist criterion may then be applied to the characteristic equation to
detgrmine the stability of the system. The wnmform characteristic
equation may be obtained by first deriving the zmmform and utilizing
(II1~5). However, additionsal insight is gained by developing an iden~
tity to determine the wnmform characteristic equation directly.

It may be stated, from (III-5), that

Glwy) = G(z) . (111-6)
s = 14 W
2 3 L
Also [1).
G(zn) = G{z) {111-7)
% = 3
n
T = Tia

and
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1
G(z) = z Ree of G(A). -t (I1I-8)
st poles 1= exp(TA)z
of CQA)

Hence, (I1II-6) may be written as

‘Wn'%“l
Clw ) = ) Res of G(A).
at poles w, [1+exp(TA/n)] + 1 - exp(TA/n)
of G(A) (111-9)

The znwform characteristic equation for the uncompensated system

of Figure 111-1 is

n=1
1+ (1/n) [ Glzgexp(§0)) =0, (111-10)
p=0 '

which, from (I1I~4) and (I1I-8), may be expressed

=1
1+ @/n) ) 6(zp)
p=0

=0, (I11-11)

exp(TA;/n) = exp(TAi/nwj¢P)

where the \; are the poles of G(\).

The wy-form of (I1I~11) is, frem (IIX-5).

. -1
1+ (i/m) ] €0y =0 . (ITI-12)
p=0
lexp (TA /o) = ex?(TAi/mmj¢p)
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in application of the Nyquist criteriom to (I1I-12), one must determine
the number of poles of the summation in (I1I-12) which lie in the right-
half wn*pl&neq This is facllitated by observing from (III-12) and

(I11i-92) that the poles of each term of the summation are determined by

exv(?ki/n~j¢P) -1

= 131113
Ya exp(TAi/n~j¢p) 4+ 1 ¢ )

at each of the poles, Ay, of G(A). These \{ may be.complex; let
Ai = in + jBi ® (111‘“14)
Then (III-13) msy be written

exp (o T/n + 104) - 1
Ya " exp(miT/n + jei) + 1

(£11-15)

where ei'ia BiT/m - ¢P° Re-arranging and rationslizing, we cbtain

exp(ZmiT/m) w L o jZexp(@iTin)sim{Gi)
L ; . (I11-186)
[exp(a T/n)cos (8,) + 112 + axp(ZQiT/n)sinz(ei)

Whether the poles of (11112} are located im the right or left haif

w,~plane depends on the veal part of {(I11i-18). V¥or stebility, the
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requirement ds
exp (2a i'r/n)‘a 1<0 , (11I-17)
which results in

ZaiT
<0 . (I11-18)

n

Hence, Oy the #eal part of the Ay pole of G(\), must be less than zero.
We may also observe that for any Ai for which o4 is greater than zero,
there will be n poles in the right half plane, since there are n terms
in the summation contained in the characteristic equation and the
location of the pples of each are dependent upon 919 Thus, one need
only determine the number of poles of G(wn) which lie in the right half
W,~plane and multiply this number by n to obtain the total.

It has been shown [7] that is only necessary to compute the fre-
quency response for -m/m < 6 i,"/n along the unit circle in the 2™

plane. This range of 6 corresponds to the frequency range amslz‘i

0 i‘mglz in the s~plane, where w, is the slow~rate sampling frequency.

8

The correspoﬁding range in the wnmplane iz determined as follows.

From (II1-5), we may write

14w

% = exp(jul/n) = Efwmwiﬁ s (111-19)
- W

n

g8 = ju
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which may be re-arranged and reduced to obtain

v = i sin (ul/m) | (111-20)
1 4+ cos (wP/n)

or
w =] tan (T/2n) . (111-21)

The range on L for the frequency-response iz determined by evaluating

(I11-21) for w at ~ws/2 and wy/2 and is
-j tan (w/2n) v < j tan (n/2n) . (111-22)
B. Bode Plot Design Technique
When computed over the range indicated in (111-22), the total
frequency-response for (III-12) is the sum of the following n terms:

(1/n)G(w ), =3 ten (n/2n) < w; < J tan (v/2n)

(I/m)e(w, ). i tam (w/2n) < w, < j tan (37/2Zn)

L3

©

(1/n)@(wn)§ -3 tan {In/la) Lw < =% tan {v/2n)
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It is noted that the nt? term can be observed from the complex con-
jugate of the 23& term, assuming n > 2. Likewise, assuming n > 3,
the n~18% term can be observed from the complex conjugate of the 3rd
term. Hence, each term of the n~term summation can be observed by
making & Bode plot of G(wn) for the range 0 < w, < j « and marking off
the appropriate ranges of LA where certain terms are observed as the
complex conjugate of G(wn) in the appropriate ranges on the Bode plot.
From the Bode plot, one may observe directly how many terms of the n-
term summation need be considered in the design problem. The effect of
the proposed digital controiler on G(wn) may be determined over the
entire range of W from which the effect on each term of the summa-
tion may be obgerved.

It is noted that, in effect, the action of a multirate digital
controller is to clamp its input at a constant level for a period of
T seconds, while operating on this input and providing an output every
T/n seconds. This clamping effect may be approximate& by inserting 2
zere-order hold after the slow-rate error sampler in Figure III-1 and
sampling the ocutput of this zero-order hold every T/n seconds [5]. This
procedure is illustrated in Figure III-3, where the z,~form tramsfer

function for the zero-order hclid is [3]

1-z8

. = “z o e m(n@.l) e _mm&mn o E e
H(z ) = {1+ 2 ° + + 27 ] - (111-23)

1 -z,
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The comparison of Figures II1I-1 and III-=3 shows that

D(zn) = Dl(zn)H(zn) .

(111=24)

If (I11-24) is substituted into (II1I-1), the characteristic equation

for the system becomes

n=1

1+ (i/n) Zo D) (2,exp (39,) ) H (2qexp (19,))C (2 exp(39.)) = O .

p

For the uncompensated case, Dl(znexp(j¢p)) is unity. Let

G’(zﬁéxp(j¢p)) = H(zjexp(39,.))G(z exp(34,)).

The uncompensated system characteristic equation is

n-1
1+ (1/n) z G’(znexp(j¢p)) =0 .
p=0

We may also write [5]

n~1
(1/n) ] 6" (zpexp(idy)) = G'(2)
p=0 '

where

(I11-25)

(111-26)

(111-27)

(I11-28)
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G' (z) = H(2)&(z) . (111-29)

However, from (I1I-23),

H(z) = 1 . {111-30)
z = ¢juT
Hence,
n-1
(1/n) § G' (z exp(J4,)) = G(z) . (I11-31)
p=0
The wnaform of (111«31) is
=1
(1/m) ] Gl () = GO (111-32)
p=0
whefe
G;(wn) = G‘bwn) . (III@33)

exp(Tr;/m) = exp(Thi/n = §¢.)

We may conclude from {(711-32) that, for the system of Figure II1I-3,
the uncompensated multirate open-loop frequency response may be obtalned
from the single-rate open-loop frequency response. It is only necessary
to transform each value of w to the correspending value of w,. This may

be done by utilizing (II1-21). The procedure way be facilitated by meane
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of the 1oglot&n(6) ve. 6 template shown in Figure 11I-4. To use the
template, one enters along the sbacisss to the particular value of w,
projecte vertically to the loglotan(e) ve. 6 characteristic, then hor-

izontally to the corresponding value of 6, where, from (III-21),

T
= o (11I-34)

This value of 6 is then divided by n and the corresponding value of
loglotan(eln).is determined from the template, yielding the value of w,.
The use of the template of Figure III-4 is illustrated by the ex-

ample of Figure III-5, where

o Lo exp(-Ts) | 100 s -
G(e) " ;j;&:ﬂiay (111-35)

the slow-rate sampling period, T, is .1 seconds, and n iz 3. The com~
puter program of Appendix A was utilized to compute single rate and
multirate frequency responses. The single rate db magnitude was then
plotted against logm(w)o To determine the multirate db gain char-
acteristic, the template of Figure III~4 was overlayed on Figure III-5.
At each of the selected points on the G(w) plot, the value of logloﬁw3)

wag determined according to the procedure stated in the previous pavra~

graph. The point from the G{w) plot is then transferred from its
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10g106w) position to the corresponding 1ogIOCw3) position. It is ob-
gerved that the graphically determined multirate frequency response
corresponds closely with the computed frequency respomse.

Ia practice, one of the design requiremente on the multirate digi~
tal controller is that the compensated open-loop transfer function for
the gsystem of Figure IiI-1 must be low-pass with respect to the system
slow-rate sampling frequency. By this, 1t is meant that the system
slow-rate sampling frequency must be at least twice that of the highest
frequency present in the frequency response of the compensated open-locp
transfer function [1]. If this condition is met, it can be shown that
the n-term summation constituting the open—-loop transfer function can
be approximated by its firet term [6]. That is,

n=3
(1/m) ] D(zpexp(36,))C(zpexp(J6p)) = (1/n)D(zy)C(zy) .

p=0
(I11-36)

If it can be shown that the uncompensated system is low-pass, then
the design requirement for the digital controller may be alleviated. It
iz noted that the effect of the multirate n on the low-pass nature of
the uncampénsated opep~looy multivate transfzy fuaction can be observed
from the Bode plot of the singie~rate transfer function. This effect
depends on the magnitude aprd phase angle of G(wﬂ) for L j tan(n/2n),
the upper Iimit for the W frequency reange of the first term. This is

illustrated in Figure 1Ii-6. which is & Bode plot of {l/m}@{wn} for
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0 2w, £3% vhere

10 , (I11-37)

T i8 .1 seconds, and n is 3. The regions for each of the terms of the
summation constituting the total multirate transfer function are marked
offton the frequency scale. The third term of the summation is deter-
mined from the complex conjugate of the second term at the same s-plane
frequency values. With respect to the magnitude of GCwa) within its

-3 db bandwidth, the magnitude 6f both the 28 and 3'd terms is seen to
be negligible. Hence, the complex sum of the three terms 1s accurately
approximated by the first term within the ~3 db bandwidth of G(wy).

An upper bound for the choice of n such that the uncowpensated
open~loop transfer function is low-pass may be chtained by assuming
that the remaining terms beyond the filrst term add directly. For this
case, the effect of the remaining terms on the total sum may be judged
from their effect on the =3 db bandwidth of the total multirate transfer
function. At the -3 db cutoff frequency,

n-1

| (/=) ) Golw )| = 707, (111-38)
p=0

Apsuwning oo high fregusney resonant wmodes, the n~l terms beyound the

firet term can be 2aid wot ro algnd Floantly influence the walue of the
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total sum if

(p-1) | (1/n) €' (wy) < <1(.707)

w, = § tan (w/2n)
Now, if
n=-1

(1/n) 20 Gplwy) = (/)G (wy)
pa

then, from (I11-32),
(1/n)6' (w,) = G(w)
at the same s-plane frequency values. Hence,
| (1/n)6G* (wy) «| G (w)
W+ jo
w, = j tan {(n/2n)

Then, from (III-39), we may write

{a-1} |G < L0707

w o jw

and the limiting relation for n is

(III»39)

(1I11-40)

(I11-41)

(I11-42)

{I11-43)
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n < 1+ ,0707 (11I~44)
e |

w-@»jco

The above velation provides a possible basis for the cholce of n.
The procedure would be te plot the gein characteristic of G(w) and ob-
serve the low-pass nature of the plot as w approaches j=o. If the mag-
nitude o§ G(w) is not significantly less than 1 as w approaches jo, the
selection of n will not matter, since the total uncompensated multirate
transfer function will not be low-pass whatever the value of n. The
digital controller must then be designed to effect a low-pass system.
If the magnitude of G(w) is significantly less than 1 as w approaches
jeo, the choice of n may influence whether or not the summation may be
approximated by the first term. Then (III-44) may be used to determine
a2 maximum value of n to provide a low-pass uncompensated open-loop
-transfer function. It would not be necessary then to specifically des-
ignate the digital comtroller so as to effect & low-pass system, if it

is possible to select n less than the maeximum calculated value.

C. Digital Computation of the Multirate System Frequency-Response.
The computation of the frequeucy-rveaponse Ler (I111-12), if per~

formed on the digital computer, may lead to numerical imsccuracies if
two oy more poles of the c@ntinucﬁs plant are nearly coincident [8].

The following development provides a means for avoiding these inaccu-

racies.
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The multirate signal ag(t) may be expressed [1]

ez‘!(t) = e(t) 6n(t), (111-45)
where
§ (&) = ] &(e=k1/n) . (111-46)
k=0

The Laplace transform of (III-45) is

E*(s) = E(s) ()

b,(8) (I11I-47)

wherse

0 denotes complex convolution and A u(s) is the Laplace trans-

form of Gn(t). (111«47) may also be written [1]

ctjo

1 .
Eg(s) = *ﬁiﬁ ijm E(A)An(S*)\)d)\ . {I11-48)

If 1im AE(A) = 0, (III-48) becomes

P
Ef(s) = -] Res EQA)A (s=2) (III~49)
poles of
An(swl}

where
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A
4 (8=A) = E?F = gﬂf ) . (I11=50)
n 1-exp (- 5(s=-1)) D (W

The poles of An(S“l) are located such that
Am = S“&"jm(ﬂms)g m = 09 iig tng@e (EI‘E"‘ﬁl)

where wg is the slow-rate sampling frequency. Since b,(s~%) has only

gimple poles, (II1-48) may be written as [1]

T MO L B0y
EPR " « WS 1 MY 5
BAGe) = -] RS m (111-52)
M-—co 5 W@

where

T
DpOg) =~ = (1T1-53)

Then

Ef(s) = (o/T) Y E (s+jmnw) {T1T54)

B0

Application of (I1i-54) to the system of Figure III~1 resulis in

@ r-1

M) L sirlertaipel ) (131-55)
o pi) i
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for the uncompensated multirate system open—-loop transfer functiom.
Since the freguency response is unique whether evelusted in the s, z,

or w=plane, the wnwplane Bode plot of the uncompensated open~locp trans-
fer function may be obtained by evaluating (11I-55) for various values
of w in the s-plane, then plotting db gein and phase angle against the
corresponding values of logloﬁwn)g according to (III-21). Only as

many terms of the infinite summation as are required for accuracy need
be used. The computer program of Appendix A incorporates (III-54) in
computing the frequency-response for the open-~loop tranafer function

of the multirate sampled—~data system.

D. A Multirate System Identity

In determining the znmform of the multirate system output for in-
pute at vartous ﬁoints in the system, difficulties may be encountered in
obtaining a zn~furm transfer function. These difficulties arise due to
the occurence of terms imvolving the z-transform of the product of a
multirate signal with a continuous plant s—domain transfer function.
This problem is alleviated by an identity which expresses such a& temm
in znfformg

Cénsider the configuration of Figuve 1II-7. The signal C(z) is

descyibed by
C(z) = Z{E(z)ﬁﬁiﬁ}} . (11i-56)

The signal G(z)ﬂ is givan by
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C(z)n = E(z)nG(z)n (111-57)

C(z) may also be written [5]

n—-1
C(z) = (1/n) ] Clz exp(32pm)] (I11-58)
p=0

Substituting (L1I-56) and (I1I-57) into (111-58),

n=-1
Z{E(2),G(s) } = (1/n) ] E[z exp(j2pm)]
k0

-G[z exp(j2pm) 1, . (111-59)
(I1I-59) will now be applied to the system of Figure I1I-8, where

it is desired to determine the output of the system in terms of the
quantization disturbance input at the digital controller output accum~

ulator. Figure III-9 shows the system re-arrengad for this purpose,

with r(t) set to zero. From Figure I1I-9,
C(z) = 2{M(z),G(s)} (111-60)
However,

M(z), = Qz) - Blz) {I11-61)
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and
B(z), = D(z)nc(z) (I111-62)
Substituting (I1I-61) aand (III-62) into (II1I-60) vislds

z2{Q(z)G(s) }
C(z) = . (111-63)
1+ Z{D(2),G(s) }

Application of the results of (II1I-59) to (I11I~63) obtains

n-1
(1/n) ] Qlz exp(32pm)] Glz exp(j2pm)],
p=0
Clz)y = n=1 ’
1+ (1/n) ] Dlz exp(32pm)]1,Glz exp(§2pm)]
. p=0

(I1I~-64)

If G(z)n can be said to be low-pass with respect to the slow-rate

sampling frequency, {(1II-64) may be written

C(z), (1/n)6(=)
Q@) 1+ (M/n)D(2}G(a},

The z~form of (I11-65% 1g
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1/a)G(z
C(z,) (1/n)6(zy) 9 (111-66)

Q(z)) 1+ (l/n)D(zn)G(zn)

which is the de@ized result.



IV, AN OPEN-LOCP FREQUENCY RESPONSE DESIGN TECHNIQUE

FOR MULTIPLE INPUT-MULTIPLE OUTPUT SYSTEMS

Multiple input-multipie output systems have veceived significant
attention In the literature in recent years [10] - [1i8]. Whercas most
of the research has besen oriented towards developing analysis and design
techniques for the general n~input, n-output case, techniques will be
developed in this chapter specifically for two and three inputs and
outputs. The case of three inputs-three outputs is of particular inter-
est in the design of non-symmetric aerospace vehicles for significant
flight in the atmosphere, such as the proposed NASA space shuttle. Such
vehicles have significant coupling between the pitch, yaw, and roll axes.
Initially, a known design technique for multiple input-multiple output
continuous systems such as the above will be extended to the sampled-

data case. A new technique will then be presented.

4. Extension of the Method of Povejsil and Fuchs [11].

This method has previcusly been discussed in Chapter IIL, It will
now be shown that the method may zlso be a2ppliz? ro sampled-data sy-
tems.

Consider the ayetem of Pigure IV-1 with k, 2, and m all equal to
n, an integeyr. Hach of the system outputs may be written in the form

ek

Yh(z) = Ek{z}n{ifm} z ?i{z @xp{jéé?%ia,:iz ennf4d’ %)

p=0

b1
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n-1
+Ey (2) - <1/n>P§ D, (2 exp(303)), 6, (z exp(30))),
n=1
+E,(2)* (1/n) | Dy(z exp(347)) G 5 (z exp(§op)) (1v-1)
p=0
where
th(z) . z<§l”exP§“T5/n),th(s)§ X (19-2)
Eg(z) = Rg(z)«yg(z) R (1v-3)
and
¢; = 2mp . (IV=4)

1f (I1V=3) is substituted into {(IV-1) and h ies set to 1, 2, and 3, the

following matrix equation may be written:

Mz}, 1-3(z) = [0z} ]1-R(z) - (1v-5)

The elements of [M(z),] ave, for row g aund coluwm h,

1
0

naa
L » s -
= ?; By, (= exp(?@D))n gh\? exp(j¢p,} ., & # h, (IV-6)



L4
and

a=1
1+g Zo Dy (z exp(305)) Gop (2 exp(Gop))y » 8 =R (1v=7)
pﬂ

The elemente of [N(z),] are given by (IV-6) for 2ll g and h.
If it is assumed that the determinant of {M(z)n] is non-zero, we may

write

X(z) = [(z), 171 [¥(2) 1-R(2) . (1v-8)

Equation (IV-8) may be expressed as a function of z, by substituting z,

for z1/m and exp(j¢p) for exp(jq;;)a Then

T(zg) = Mz 170 NGz ) 1-R(z) (1-9)

The characteristic equation for the system, from (IV-9), is

Mz )| =0 . (1v-10)
In order to apply the method of Poveisil and Fuche, it iz necesgsary to
determine & specific zmwform <haractevietic equation to achieve a desired

system performance. It ig potad that this desired system performance

generally will be such that thz system is regarded ae being "“low-pass”
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with respect to the slow-rate sampling frequency, as wae previously dis-
cussed in Chapter III. Hence, the summation terms indicated in (IV-6)
and (IV-7) may be approximated by the first term in each case.

After establishing a desired svstem characteristic equation, the
form of 2 proposed compensated system characteristic eguation is exam-
imed to establish equatione by which the coefficients can be celculated
for the proposed compensators. Several disadvantages are noted in this
procedure. The'desired gystem characteristic equation is not necessavrily
easily established, especially in the case of high-order systems. Fur-
ther, the form of the éompensation muet be sssumed, hopefully by obser-
vation of the éystem characteristics. Finally, in calculating the
coefficients for the azsumed form of the compensation, conflicting re~
quirements may be encountered.

Certain observations can also be made concerning multirate sampled-
data systems for which the fast-rate sampling in each channel is at a
different rate. For the system of Figure (IV-1), let k # £ # m, but
the ratios of 2 to k and m to & be integers, where k, £, and m are each

integezrs. Then, for ocutput h,

k-1
¥, (2) = E, (2)+(1/k) Z{} D (2 exp(39)), 6, (2 exp(35)),
.1
¥ e
+ B, (2) <1,»>?§Gn (= expliog)) Gy, (x exp(io))),
+ B (2) - (1/m) F D,z exp j@' 3 ghafﬁ exn{3o5d) - {I¥-11)

p=0
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Iin the same manner as for the previous case, the following matrix

equation may be written:

LONAMBORSLONNNE DR (1v-12)

The elements of IM(Z)R,angB for row g and column h, are

r=1
1 . ~ . _
Py pzo Dp(z exp(39)),Goyp (z exp(305)) . 5 8 # By (1v-13)
and
-1
.lm 3 $ = -
1+ z pZO Dy, (z exp(j¢P))rGgh(z exp(3op))ys g =h, (IV=14)

where ¥ may be k, 2, or m. The elements of [N(z)k % m] are given by
|- Radi 1

(IV-13) for all g and h. Then
I(2) = M)y o 17 NG, 1 RG2), (1V-15)

assuming that the determinant of [H(z)kglgm] is nonsingular.

The application of ths wmethod of Povejsil and Fuchs is sumewhat
more restricted in thie case, since expression of (IV-15) in terms of
By s for example, rezults in terms such as

Qe

;j& z Dz (zke?ﬁzﬁ (j ‘33;’{!%} éuggziz?{ex?(j(b@ !k>}u9 (1’&7”‘16)
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where v is the integer ratio of £ to k, and

D, (2 exp (30, /K)) 6, (2 exp (30,/10)

g2

= D,(z exp(ﬁ%))gﬁg?_(z exp(3¢y)) (1V=17)

(D), Q)

exp(362) /0w exp(3ep/1) (/)

Similar terms result if (IV-15) is expressed in terms of %y, Since the
desired form of the compensated system characteristic equation must be
pre~determined and the form of the digital controller transfer function
must be assumed 'béforehandy termg which include fractional powers of a
multirate variasble, such as the above, would cause considerable diffi-

culty. If (IV-15) is expressed in terms of z,, terms involving Dl(zm)l

and Dz(zm)l.resultg'where "
v
Dl(zm);.w Dl(z)k . (1v-18)
u 2 (LK) zml/(llu)
and
D,(z)1 = D, (2, . (1V-19)
v i?;{ij(z} =z L7 (1!'\’}

i
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Such terms would csuse difficulty in determining 2 desired form for &
proposed digital comtroller. Hence, the method of Povejsil snd Fuchs
could be used for the case of (IV-~15) only with considerable effort.
B. Development of the Open~Loop Technique
for Two-Channel, Continuous-Data Systems.

Congider the two-channel, continuous-datz system with cross-
coupling shown in Figure IV-2. A signal-flow graph representation of
this gystem iz given ip Figure IV-3. It is noted that the signal-flow
graph representation containg three loops, one in each channel due to
feedback, and the other, due to cross—coupling. The characteristic
equation for this system may be obtained by the .application of Mason's

gain formula and is

(1+ D1G11)(1 + DZGZZ) - D1D2G12G21 = 0, (Iv-20)
It is intended;to develop a frequency-response design technique for the
system of Figure IV-2 by opening each of the sgbove-mentioned loops and
obtaining an “open-loop” transfer function [9] for each loop.

Let the feedback loop of the Y1 channel be opened after the El mode
in the signal-flow graph of Figuve iV-3, as showa in Figuve IV-4, The
transfer function, wEi/El? will now be obtained by application of Mason's
gain formuia to the éigﬁalwfiaw graph of Figure IV~4. This open-loop

trensfer funciion is
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E! (L + D.G,.)D.G,, - D.D.G,.C
172712721
1 22271711 . (1V-21)

E 1+ D,6,,

The asbove may be written

E! DG, G
271272
-1l DlgGll - 221220 (19-22)
E, 1 + DyG,,

It is desired to apply the Nyquist criterion to the uncompensated

form of (IV-22). One would then plot

E' G, .G
12¥21
— 6, = ——— (1V-23)
E, 1+6,,

as a function of frequency and determine the gain margin and phase margin
for (IV-23). The design procedure would then be to specify the compen—
sators D, and Dz so a8 to obtain the desired gain and pﬁase margins for
(IV-22). The procedure is facilitated 1f, over the frequencies of

interest, the term G /{1 + G,,) is negligible with respect to G

n
12721 11°?

i.e., if the system is appvo¥ mately decoupled. Since 1t is generally
desired to deccuple the system, if the above is not the case, then it
may be possible to specify the crmpensatoer Dg g0 as to approximateiy de~
Acouple the system,

Now, coneider the syorem of Figure IV-3 cpened aiter the Ez node,

as shown in Figure IV-3. The open—locp trznsfer function is
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- %2* - D, { c,, - iz § (IV=24)
2 i+ D6

It le observed that, 1f it 48 desired to decouple the asystem, the
compensator D, should be specified 80 as to cause the term 31@21G12/
(1 + B;6;,) to be negligible with respect to G,,. Then the compensators
D, and D, must not only achieve the desired gain and phase wargins in
(IV-22y and (IV-24), but wmust also decouple the system in the stated
manner. Hence, one may proceed to specify the comwpensators by fivst
checking the degree of coupling of the uncompensated open~loop transfer
functions, designating a preliminary compensation to decouple the system;
refining the preliwinary compensation to achieve gain and phase margin,
then checking the compensated opegwloop transfer funcitions to insure
decoupling.

If the system has been decocupled by the design procedure, then it
should follow that the open-loop transfer function for the remsining
loop {due to cross—coupling) should have more than sufficient gain and
phase margins. This is shown to be the case if the system of Figure IV-3

is opened after the X; node in the G,, branch, as shown in Figuve IV-6.

The open~loop transfer fupciiocn ig

$
R S L S U oo T S (1V-25)
Xy 14 D38y L i DsCag
The same transfer funciion iz obtainaed if the system is opened after the

¥

I9=-25) in the form

o

¥, nede in the Gy, brasch. 4o may also write
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k]
) f.l, _ 0,6,,6, o Dy6y,0, ] 1 . (1V-26)
X, 1+D6,  1+D6, 6,6,

It is observed that the decoupling procedure should cause (IV-26) to

be negligibly small. Further, the denominatore, {1 + D } and

IGll
1+ D?_GZZ)9 have been designed so as to not comtain zerces which lie
in the right-half s~plane. Hence, by the Wyquist criterion, (IV-25)
represents a stable aystem characteristic equation.

To illustrate the design procedure, consider the system of Figure

IV-2 with

4(s/8 + 1)(~-8/8 + 1)
G11 =Gy, = (1V-27)
(e/10)2 + 2(.05)s/10 + 1

and

G . =6 =
21 12 g/10 + 1

* (1v-28)

Since the system is symmetrical, it ig only nece zrry to consider the
open-ioop tramsfer fumction, éﬁziEla & computer program {Appendix B)
was written to obtain the frequency-response of (IV-23). Data was ob-
tained.for GllE Ggl*lzf(l % sz}g end the toiel uncompensated open~locp
transfer f?ncticu¢ Thiz dats was plotted as a Wyquist diagram and ap-

pears in Figure IV-7. Ir ig shservad thar the total uncompensated open-

ioop tramsfer funcrion may he sccurately approximated by the Gl3 term.
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Hence, it will not be necessary to initislly specify the compensation
8o as to decouple the gystem. However this exsmple will illustrate
all other points of the design procedure. Later in this chapter, an
example is given for which it is necessary to specify the compensation
so as to deccuple the system.

It is alsc observed that the system is unstable, by the Hyguist cri-
texion, simce G11 encircles the 0 db pt. once in the clockwise direc~
tion. Then the compensation must stabilize the system and obtain the
required gain and phase margins.

A Bode plot was made for G,;s from which it was determined that a
compensation,

1

Dl s ‘ 5 (IV*Zg)
s{sf1.5 + 1)

would achieve a gain margin of approximately 6 db and a phase margin of
approximately 30 degrees. Table IV-1 was then established to check the
open-loop tramsfer functiom for decoupling. The value of each function
listed in Table IV-1 is given in db magnitude and degrees phase sghift
at the various values of fraguency. The term, 32@?2!1 + D,.G. . is ob-

222

tained by means of the Hichois chart, as shown in Figure IV-8, where

D2G22 = D,G,, » {1v-30)
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TABLE IV-1

Design Test for Decoupling

D,G2, D, DyG1567,

w G, 1+ D,6,,] - 1 + B26p2 6y, Gy 1+ D,C,,
1.0{12.3 «.6 .6 1=15 |-11.7 -14.4 0.0 | -12{ -11.7 «26.4
1.5112.5 -9 1.6 ~-24 |~11.1 -23.1 0.0} «181 =-11.1 ~41.1
2.012.9 ~l,2 2.31-35 |-10.6 -~-33.8; 0.0} -30] -10.6 ] ~63.8
3.0{14.,0 ] -1.9% 3.4| -60 |-~10.6 ~58,1} -~.5| <46} ~11.1} ~104.1

4.0{15.5} -2.7} 2.5| -104(-13.0 | ~101.3 | ~1.0{ =54} -14.0{ -155.3
5.0417.4 | -3.8; 2.0| -120|-15.4 | -116.2 | -2.0| ~60| -17.4| =176.2
6.0{19.8 | ~5.4] ~1.0| 144 m2058 ~138.6 | -3.0| ~66 | ~23.8] -204.6
7.0122.7 | -7.8] -7.0| -162{-29.7 | -154.2 | -4.0| +72| =33.7| -226.2

7.6§24.9 | -10.2| -4.0} ~180}~-28.9 | ~169.8 | ~«4.0| -80] =32.9| -249.8
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Then, from (IV-27), the term Dzl(l + D ) is obtainad. The term,

2022
G12621§ ie then added to obtain the final entry in the teble. Comperi-
gson of the values listed for the last term in the table with the values
listed for G11 indicate that the system is reasonably decoupled for the

range of frequencies shown, since

l6,,| > 10-] D,6,,6,,/(1 +D,G,,)| (IV=-31)
The range of freqnencies listed was considered to be the critical range
since it was attgmpted to establish the gain and phase margins for the
open~loop transfer function over this frequency range.

A digital computer progrem (Appendix B) was then run to obtain the
compensated system freguency response., The results are shown in Figure
1V-9, indicating a gian margin of 6.5 db and a ﬁhase margin of 30°. The
results of Table IV-1l are also verified.

A digital computer program was then written to simulate the compen-
sated system utilizing the IBM S/360 Continuous System Modeling Program.
This program is given in Appendix C. The results of the simulstion are
given in Figure IV-10, where the output yl(t) is given for a step input
in the yl(t) channel and in iapus in the yz(t} chirnnel.  The output yz(t)
is also gilven for‘the same conditions. It is noted that the peak value
of y%(t) is reasonably zmall, fe:tling out to a steady-state value of
Z8YC,

In this exsmsle sod i vthe exawple whiszh follows in sectlon C of
this chapter, no attempt ie wade to arvive at a “best” cowpensation. The

examples are used onlv to illustrate the proposed design procedure.
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x % D (Gy17D565,6y7
/(1 + DZGZZ))

— = 0,6,,6y,

[+ 39Gan))

Compensated Nyquist diagram.
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C. Extension of the Open-Loop Technique
to Two=~Channel, Sampled-~Data Syztems.

The analysia of the continuous, two-channel, coupled system will
now be extended to the sampled-data, two-channel coupled system of Fig~
ure IV-11. The system of Figure IV-1l1l will first be analyzed for the
cagse that all sampling in the system %s synchronous and at thes same
rate. The case for multirste sampling will then ke considered and cer-
ried to the case that the fast-rate sampling is at a different rate in
each channel.

Figure 1V-12 is a signal-flow graph representation of the system of
Figure IV-1l1, with single-rate sampling, opened at El(z)ﬁ The open-loop
transfer functiom, —E;(z)/El(z), is obtained by applying Mason'’s gain

formula and is

E;(z) | Dz(z)GZI(z)Glz(z)
y = D (=) { 6, @) - = , } . (1V-32)
E (z) 1+ D2(2>G22(Z)
where
- 1= exp(~Te) .. ,.}
Gij(z) Zé - Gij {a) { - (Iv-33)

Likewise, if the systen is openred at the signal Ez(z)s the foliowing

open-loop transfer funcition is obtained:
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E;(z) Dl(z)Gzl(Z)Glz(z)

=

«0,(2) { 6,,( - b (1v-34)

Ez(z) 1+ Dl(z)Gll(z)

Hence, the same design technique as was applied to the continuous
case may also be applied to the single-rate discrete case, However, In
considering the loop due to croéSacoupling, an lmportant consideration
arises. Whereas, fqr the continuous case, it does not matter whether
this loop 1is opened in front of or after the cross-coupling transfer
functions, for the sampled~data case, an approximation technique must
be utilized in oxrder to obtain an open-loop transfer function if this
loop is opened in front of the cross—-coupling transfer function [7].
However, an open-loop transfer function can be written 1f a data~hold
is added in front‘of the cross-coupling transfer function. The addition
of the data~hold in no way affects the operation of the system. An openm.
loop transfer function may also be written if the loop is opened after
the cross-coupling transfer function. To obtain the open-loop transfer
function for this condition, the system of Figure IV-1ll will be opened
after the G;l(s> transfer function block, as shown in Figure IV-13.

Note that Figure IV-13 i3 s z-transform signal-i{low graph representation
of the sbove condition. The open~loop itransfer function, mw;(z>/w1(z>s

i
is

W;(z) le(z)GZI(z) Dz(z)Glz(z)

- = “ s (1v-35)
ﬁl(z) 1+ Dl(z)Gll(z) 14 Da(z)Gzz(z)
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The w-plane design procedure [1] for sampled-dats systems may now
be extended to the multiple input-multiple cutput case. That is, the
w-~transform representation of (IV=32), (IV-34), and (IV=35) mey be ob-

tained. The compensated form of these equations would bhe

Ef (w) B W8 G (W)

Ly D, (W) ? €, ) - 2 2l 12 é , (19-36)
Elﬁw) 1+ Dzéw)Gzz(w}
E! (w) D WG,  wEC (W)

-2 = Dz(“’) gczz(w) -2 21 L é 2 (1v=-37)
Ez(w) 14 chw)cll(w)

and
) w;(w) _ le(w)GZI(w) Q ﬁz(w)GIZOW) a (19-38)

Wl w) 1+ Dl (W)Gn w) 1+ D2 (W)G22 (w)

A Bode plot design procedure may be used, since the regiom of stability
is the left-half prianes in order to decouple the system, we cbserve,
as in the continvous case, that the second term on the right of equations
{(I¥-36) and (I?w37) wust be ma&etﬁegligible with respect to the first
term. If this is dome, then by application of the Nyguist criterion,
equation (IV-38) represents a stable system. Essentially the same pro-
cedure for compensator design as was presented for the continuous case

way also be follewed here. At thie point, the mulecirvate sampled~dats



case will be developed.

cedure for a sampled-dats system will then be presented.
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An exsmple which illustrates the design pro-

For the system of Figure IV~11l, let k and L be integers greater

than unlty, k not necessarily equal to £, but the ratio of L to k is

an integer, r. Opening the system at El(z)9 we may write the following

set of discrete equations:

¥, (2)

, (z)

WZ(Z)

E;(Z)

Ez(z)

¥, {z)

WI(Z)

Mz(z)

whers

g

MI(Z) + Wz(z) s

k=1 jop 38
xl(z>§. L D (e )6 (ze” )

p=0

1
E,(2)¢
-, ()

sz(a)

-1
z

D

p=0

jop L)
2(ze )2G12(ze P)z

»

M, (z) + ¥, (2) >

i
El(Z)EE

z.e.,
E (z): )
2 [ pes

1
D

=0

A TS jo.
-V P
pgénl(zc )kG21(Z€ P)k

? 7
z(zej¢?)gG22(zej¢P}g

(IV“39§
(1V=40)
(1V-41)
(1V=42)
(IV=43)
(IV=44)
(1V=45)

(IV= 486}
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¢§ L Zﬁp @ (IV“Q?)

Figure IV~14 is a signal-flow graph representation of the sbove set of

equations. The open-loop tramsfer fumction is

Bl (z) k-1 .
“— %ﬁ ) Dl(zej¢p>kgllézej¢§)k
El(z) p=0

2 D, (zej¢p) G (xej¢§)k 2 D, (zsj¢§) 6, (zej¢p)

k p=0 k21 p=0
=x 2“1 k-
1+4 1 1 D, (zej¢p) G, (zej¢§)
* p=0 2

(1V-48)

In the same manner, if the system is opened at Ez(z), the open=-loop

trangfer function is

E’(Z) 2=1
2 é= ) D, (zej¢ﬁ) G, (zej¢§)
Ez(z) p&O

an

X D (zej¢?) <X (zz %@)a°w- z P (zeJ¢?) 52 (zej¢p)
?“0 p=0

+ L 2 D (3% ¢ (acd®h)
p=0

(IV=49)
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if the remaining loop is opened after the Ggl(s) block, the epen=loop

transfer function is

-1
)

o Dl(zsjéé)k021(25j¢§)k
pﬁ

1
Wl (2) k

-

b I

W, (2) SN 16f
1 1+ L D (zedtp) 6 (2e%P)
p=0

-1 , §
%, ) Dz(zej¢§)mclz(zej¢p)g
. p=0 . (IV=50)

=3
1+ %ﬁpzo Dz(zej¢§)2G22(zej¢ﬁ)g

It is noted that if the system is decoupled by the design procedure,
(1v-50) represénté‘a stable system characteristic equation, as in the
previous cases .

It is desired to extend the results of Chapter III for the single-
Jjoop, multirate case to the two input-two ocutput case. This will be done
by trensforming (IV-48) to the zy-plane and (IV-49) to the zgmplane, then
taking ﬁhe:wk and wg transforms, respectively, of the resulting relation-
ships.

Proceeding with (IV-48), tae substitution of r-°k for £ and Zy for

zlik cbtaing
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B (Zk) 1 Rl

m = D (z
El(zk) k PZO

i¢

kﬂl L1
ik Jopiy & Jopic Jopk
Pz D, (zy¢e P )Gzl(zks Pkyey p£0 D, (zy € L )rclz(zke P ).

2,“-3.
j¢pk
1+ R ¥ B, (z,e )G

j@pk
£ 22 )
p={

(zke f
{1v--51)
FPor (IV-49), the substitution of L/r for k and z, for z%/i cbtains

E'(z ) -1
278 i, j¢pg j¢Pg
- ) z Dz(zze )Gzz(zze )
Eg(zg)
é'zgl D (z £j¢Pz)G ( j¢Pg i 2 D, (z ej¢?g)1c (z ej¢p£)1
2 p=0 2 kpﬁﬁ 217 & ‘,
k=1
1 j¢p2 j pz
1-&»%;1: X Dl(zg )Gll( ).J:,
p=l ?
{1V~ 52)
For {(I¥-51) am&‘(IVw52}§
2ap
o " K (19-53)
and
¢ ns?'iiég

. (1V-54)
Bl 3
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As previously noted, in general, the compensators must be speci-

fied so as to attenuate the frequency sidebands inherently present in
the sampled outputs of the compensators and distributed sbout muiti-
ples of 2n/T radians/seconda [6]. With regard to équationa (IV=51)
and (IV-52), this specification would require each of the summations
in the twduequations to be low-pass with respect to the slow-rate gam-
pling frequency. That is, each of the summation terms would be accu~-
rately approximated by the first term in the summation. It will be
asgsumed that the.compensated system must satisfy the above condition.

Then equations {(IV-51) and (IV-52) may be written.

e : 1
B (z) D, (=) 7 D2(21 65y (26, ()
- -— 6 (z) - - - (IV-55)
E, (zy) 1+ 2D, (z),6,,(z),
and
: L ,
i Ez(zz) ) DZ(ZZ) ¢ (a3 - K Dl(zz)%?21(zz)%?12(zz) |
Ez (Zz) [} 22 2 @ (IV“56}

1
L+ £D, (246, (233
¥ T

It is observed that gach of the above equations is written in terms
of the fast-rate variable corresponding to the fast-vate sampling fre-
quency assoclated with the compensator transfer function which appears

outeide the parenthesis in each case. It wiil be assumed that it is



76

desired to decouple the system. The first step in the design procedure
18 to obtain the uncompensated frequency response for the equations
(1v=55) and (IV-58). This iz done by means of the procedure presented
in Chapter III concerning the digital computation of the frequency
response. This procedure provides for the computation of the frequency-
response at various values of w in the s~domsin. The degree of decou-
pling of the two uncompensated open-loop transfer functions may be
checked by comparing fhe second term of each equation against the re-
spective first term at various values of w. If it is determined that
the uncompensated openwloop transfer functions are/not sufficientliy de-
coupled, a ?reiiminary compensation to decouple the system may be speci~
. fied by making a Bode plot of (1/2)G22(w2), plotting db magnitude and

degree phase shift against 103100wm), where

AT (1V=57)

The compensator Dzéwz) ®ay then be specified zo decouple {(iV-55) by ad-

justing (1/£)D20§2)G22(w2) gsuch that DZ(WQ)GIZQWZ)Glewl)/Q + Dzéwg)Gzzewm)
is sufficiently minimized. This procedurs may be facilitsted by utiliziag
the Nichols chart, locating the term (E/QEEZQWR)GZZ(W%) in a region of

the Nichols chart so as to minimize DZ(WE)GZZGWQ)/Z + Dzéwz)czz(wz)g The
preliminary specification for Dl(wk} is obtained in the same wannev. The

specification of the compensation may then be rvefined by adjusting the
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Bode plote of (1/k)D10wk)Gll(wk) and (l/Q)DZ(wQ)GZZ(wg) to achieve the
desired gain and phase margins. The compensated open-loop transfer
functions should then be checked to insure that the desired dégree of
decoupling has not been lost.

The procedure outlined in the preceding paragréphe will now be

iilustrated by an example. For the system of Figure IV-1li, let

G' (s) = 10 , (IV-583
118 (s + 1)(s/10 + 1)
¥ & 10 s -~
622 T TS (1v-59)
and
(1V-60)

1 e B e,
Glz(s) Gzl(s) gf6 + 1

Also, let T be .1 éec@ndsg k=2, and § = 4. The computer program of
Appendix D was utilized to obtain the frequency-response for the open-
loop transfer functions, mEiéwz)/El(wz) and “E;(wu)/Ez(wu)“ The resulgs
of the frequency-response program are plotted as a Nyquist diagram in
Figures IV-l5 and IV-16, where values of v, and w, are indicated ve-
spectively. It is noted from Figures IV-15 and IV-16 that a strong
degree of coupling exists between the chennels of the system.

In order te apply the Nyquist Criterion to determine the stability

of the aystem, it is unecessary to determine the number of poles of the
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uncompensated forms of equstions (IV~55) and (IV-56) which lie in the
right-half v, and wumglaﬂesg respectively. Consider the uncompensated
form of (IV-55). The poles of this equation are the poles of Gll(wz)9
Gzléwz)9 Glz(wz)r and the zeroes of 1 + (l/é)Gzszz)ra The poles of
Gllﬁwz)g GZI(WZ) ’ Glzéwz)rs and Gzz(wz)r may be determined by means of
the resulte of Chapter I1I (see equation III-18). Application of this
proeedure indicates that the aforementioned transfer functions contain
no poles which lie in the right-half w,~plane. Obzervation of the -
diagram for (I/A)Gzzﬁgu) in Figure IV-16 and applicstion of the Nyquist
Criterion shown that 1 + (1/4)6220w2)r has no zeroes in the right~half
wzwplanea Then the open-loop tramsfer function, wE;(wz)/El(wz)g has no
poles which lie in the right-half wzmplane. Application of the Nyquist
Criterion to the Myquist diagram of Figure IV-15 for the total uncompen-
sated open-loop tramsfer function indicatea that Ehia opeﬁmloop transfer
function is stable, with a gain margin of 3 db and a phase margin of

20 degrees. Application of the ssme procedure to the uncompensated
open=loop transfer»iunction, »Ez(wq)/Ez(wq)g indicates‘that this trans-
fer function is also stable, with a gain margin of 9 db and a phase mar-
gin of 20 degrees.

The computer program of Appendix E was utilized to obtain a simula~
tion of the uncompensated syétem, The results of the simulation aﬁe
given in Pigure IV-17, where the outputs yl(t) and yz(t) are plotted
for a step input at'rl(t} and no input at rz{t}o These results also in-

dicate a stroug degree of coupling between channels. Further, there

ig considersble overshoot and oscillation preseant in both cutpute.
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It will be attempted to compensate this system such that the degree
of coupling is significantly reduced, such that the gain margin is at
least 6 db and the phase margin is at least 30 degrees in each channel,
and such that an s-domain closed=-loop frequenc& bandwidth of 3 rad/seé
is maintained. The specificatioh for the compensator Dléwz) will first
be considered. The first step in the design procedure is to make a
Bode plot for Gll(wz)’ Gzlﬁwz), and Gzz(wz)f' These Bode plots are shown
in Figures IV-18 and;IV-19° The bandwidth requirement of 3 rad/sec in
the s-~domain corresponds to an approximate value in the wz—plane of

7.9 x 10~2. Hence, (1/2)D1(w )Gll(wz) should be greater than 0 db for

2
all values of w_ less than 7.9 x 1072, A compensation

¢35

=TT (Iv-61)
2

.079

Dy (w,) =

will cause the magnitude of (1/2)D1(w2)G116w2) to be 0 db at v, equal to

7.9 x 10”2, The phase angle of Dl(wz)Gll(wz) is -145° at this value

of W, From the Nichols chart of Figure IV-ZO, the magnitude of

Dw)e (w)/2+D (w)G (w) is determined to be 4.5 db. The magni~-
12" 11 2 1 2 11 2

tudes of (1/2)G116w2) and (1/2)G210w2) are 9 db and -1 db respectively.

Hence, the magnitude of Dl(w2)6210w2)G12(w2)2/8 + (A)Dl(wz)Gll(wz) is

approximately ~6.5 db at v, equal to 7.9 x 1072, Compared to the magni~-
tude of (1/4)G22(w2)2 at this value of Vs the above result is observed

to provide 'a reasonable degree of decoupling for (IV-56).
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Thue far, the compensator D1 (wz) has been specified so as to pro-
vide approximately the desired closed-loop bandwidth, achieve a rea-
sonable degree of decoupling, and attain the required phase margin. It
is now necessary to determine if the desired gailn margin has been at-
tained. The Bode plots of Figures IV-18 and IV~19 indicate that
(1/2)D16w2)G11(w2) attains a phase shift of ~180 degrees at w, equal to
1.4 x 1071, with a.gain margin of 8 db. The Nichols chart of Figure
IV-20 indicates the magnitude of D, ()G, ,)/2 + D, (w,)G,, (w,) is
-4 db. At this value of v, (1/2)G11(w2) is 3.5 db, (1/4)G22(w2)2 is
4.5 db, and (1/2)G21(w2) is -2.5 db. (1/4)G12(w2)2 is approximately
equal to (1/2)G21(w2). Hence, D, (,)G,, (w,)G (7)) /8 + (4)D ()G (W)
has an approximate magnitude of -12.5 db at w, equal to 1.4 x 10-1, A
reasonable degree of decoupling is again seen to exist for (IV-56).

Since Figures IV-18 and IV-19 indicate that (1/4)G22(w2)2 has substan-
tially the same gain and phase characteristics as (1/2)G110w2), it is
expected that if Dz(wu) is made the same as the sbecification of Dlowz),
the design specifications will also be met in the second channel. The

wz—plane frequency of 7.9 x 102 corresponds to a wu—plane frequency of

3.9 x 1072, Hence, the specification of Dz(wq) should be

D = 05 b4
Z(W’-!) WL., 4 1 (v 62)

.039

With the aid of the Wichols chart of Figure IV-20, a test of the

compensation may be made to check the degree of coupling. This test
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may be of the form of Table IV=-2. The values listed in Table IV-2 in-
dicate db magnitude corresponding to v, frequency values. The values
listed in the final column, when compared to the values listed for
(1/2)Gll(w2),51ndicate that a reasonable degree of decoupling does exist.

The frequency-response for the compensated system was then computed,
the results of which are given in Figures IV-2l and IV-22, These Fig-
ures indicate that the total open—-loop transfer functions are accurately
approximated by the (1/2)p, w,)6,, ) and (1/4)D,(w )G, ,(w,) terms, re-
spectively. Also, Figure IV-21 indicates a phase margin of 35 deérees
and a gain margin of 10 db. Figure IV-22 indicates a phase margin of
40 degrees and a2 gain margin of 10.5 db.

A digital computer simulation of the compensated system was petr-
formed by means df the program of Appendix E,‘which utilizes the IBM
System 36% Continuous Systgm Modeling P:ogram. The results of the simu~
lation are given in Figures IV-23 and IV;24. Both of these figures in-
dicate that the systém is reasonably decoupled. Also, the response in
each channel corresponding to a step input in the respective channel is
séen to be réiatively fast with a reasonably small Séttling time.

It is to be noted that the above results were achieved with simple
first-order compensators. It should be expected that even better re~
gsults would be achieved with second- or third~order compensators. It
is also to be noted that the case treated by the example is tﬁe nulti-
rate sampledsdata gystem with unequal fast-rate sampling in each channel.
It would be very difficult to treat this particular case by means of

the current state-space decoupling techniques [12]-~[15], since it would
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be necessary to obtain a discrete state variable description of the

system,
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Table IV-2. Design Test for Dacoupling

D22622 D22 D32612673
¥ 11 14D,,65, 14D,,65, €126 14D,,6,2
o4 | 14.5 -2 ~14.7 0. 14,7
.05 13.0 .75 ~12.25 ~.50 ~12.75
.06 11.0 2.3 ~8.7 -1.0 -9.7
.08 8.5 4.5 -4.0 -2.0 -6.0
L0 6.9 5.0 -1.9 -3.0 -4,9
13 4.1 -1.5 ~5.6 -5.0 -10.6
.14 3.5 =4,0 =-7.5 «5.5 =13.0
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V. THE OPEN~LOOP DESIGN TECHNIQUE FOR SYSTEMS

WITH MORE THAN TWO INPUTS AND OUTPUTS

As presented in the previous chapter, the open-loop technique for
two‘;nput—two output systems consists of three primary steps. First of
all, an open-loop transfer function must be written for each of the
channels opened at the error sampler. Secondly, in order to apply the
Nyquist criterion to the open-loop transfer function, the number of open-
loop right half plane poles must be determined and an open-loop frequen-
cy.response must be obtained. Finally, a compensation must be specified
in each channel so as to approximately decouple the system and to meet
the various other design specifications.

In order to extend the open-loop technique to systems having more
than two inputs and outputs, it is desirable to develop straightforward
methods to facilitate the aforementioned procedures. The paragraphs
which follow will present the open-loop technique in terms of the general
n input-n output system. The technique will then be illustrated by ap-

plication to a three imput-three output system.

A. Procedvre for Obtaining Open~Loop
Transfer Functions.
It was shown in the previous chapter that it is only neceasary to

consider the open-loop tramsfer functions corresponding to each of the

94
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channels opened at the ervor sampler. Hence, the procedure which is pre-
gented here is developed for this specific purpose.

Consider'the gystem of Figure V-1. Suppose that it ;s desired to
determine the opehfloop transfer function for the system opened at the
error sampler in the first channel. A signal flow graph may be drawn for
the system upder this condition, similar to the signal flow graph of
Figure IV-4. The input node of the signal flow graph corresponds to the
output of the error sampler at which the system is opened. The output
node of the signal flow graph cogresponds to the input to the error sam—
pler. Mason's.éain formula would then be applied to the signal flow
graph to determine the open-loop transfer function. The application of
Mason's gdiﬁ formula requires determining the various feed-forward paths
for the open=loop system, the various loops, and fhe cofactors for each
of Ehe'paths [16]. The structure of the system of Figure V-1 allowslfor
getting forth .certain rules for determining the v&rious paths, loops, and
cofactors with a minimum of effort.

The various feed-forward path transfer functions‘for the system
opened at the error sampler in any given channel are determined by pro~
ceeding from the iﬁput node of the signal flow graph of the open~loop
'system'ta the oniput pnode in the direction of the arrows and in every
pogsible manner without touching any'of the nodes of the signal flow
graph more than once. For the system of Figure V-1, it is observed that,
given a éhannel opened at the error sampler, there will be several pos-

sible pathe from the output of the error sampler to the output of the
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open channel, due to the coupling between channels. There is the obvious
path through the open channel controller and plant transfer function com-
bination. ;Theg, con&idezing any one of the remaining channels, one may
proceed from the output of the error samplef through the open channel
controller and cross=-coupling transfer function combinacion to the out=
put of the other chammel, around the feedback loop, then through the
other channel éontroller and cross-coupling transfer function combination
to the output of the open channel. Also, there are similar paths ob-
taiﬁed by considering any two of the remsining channels at a time, any
three, etc. The following procedure will obtain all the feed-forward
path transfer functiona for the system opened at‘thé error sampler in any
channel:
1. For P,, write the negative of the controller-plant transfer
function combination for the open channel.
2, TFor Pz,'Psg el Pﬁ,vwrite the products of the contrqller -
cross-cdupling transfer function pairs from the open channel
to eéch of the réhaining channels.
3. For the remaining paths, write all possible different combina~
tions of controller - cross—-coupling transfer functions three
at a2 time, four at & time, ---, n at a time which begin at
the open channel énd,terminate on the open channel without
touching any other channel more than once. Take the negative

of all odd combinations.
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n3-1
(1/n3) | D, (zej¢é)
p=0

n3 13(z€j¢ﬁ)n3 (V-4)

and

nl-1
(1/a1) D (zej¢b)
- p=0

)
]
i

nl 31(zej¢ﬁ)n1

n3-1
/a3 ] o, (3 s, (zej‘“")
p=0

n2-1
(1/n2) pZO D (zej(bb)nZGlz(zej‘w)n2 . (V=5)

The above results were checked by constructing the signal flow
graph for the three input-three output system opened at the error sam-
pler in the first channel and applying Mason's gain formula to deter-
mine the open~-loop transfer function, as ;hawn in Appendix ¥. It is ob-
served that the resultg of the prescribed method agree with the results
of Appendix P.

Loop transfer' functions are obtained by startiﬁg from any given
signgl flow graph node and proceeding in the direction of the arrows to
any other node or series of nodes and then back to the initial node,
without touching any other nodz more than once. For the system of Fig~
ure V-1 opened in any channel, all such loop transfer functions may be
written by writing the transfer fumctions around all the closed feedback

loops, then writing all possible different combinations of cross-coupling
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transfer functiqﬁs which begin in any channel except the open channel
and end in the same channel. To illustrate this procedure, consider the
three input-three output system of the type of Figure V-1 again with the

system opened at the error-sampler in the first channel. Then

= - (1/n2) Z D (zej¢§) 2 (zsj¢§) (V=6)
p=0
and
- - op ¢ _
L, = - Wa3 pZo Dy (23?6, (%) . (v-7)

Omitting the first channel, the remaining cross-coupling transfer func~

n2-1
tions are (1/02) §] D (zej¢9) .83 (zej¢§) , and (1/n3) Z D (zej¢§)
p=0 p=0

st(zej¢t)n3. Then

n2-1
= @/m) | b, (zem‘) G oz
p=0
. /o3y Z D, (zejms) KA (ze”% : (V-8)

p=0

The above results also agree with the results of Appendix F.
From Mason's gain formula, the determinant of the open-loop trans-

fer function is formed according to [16]
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A=1- (sum of all loops) + (sum of the products of all non-
touching loops taken two at & time) - (sum of the products
of all non-touching loops taken three at a time) + =====,

(v=9)

The cofactors, bys for the various paths are also formed according to

(V-9), where only those loops which do not tecuch on the path are uti-
lized. Applying the above to the three input-three output system, the
open-loop transfer function for the system opened at the error sampler

in the first channel is

) E; (2) L EAAl +P,A, +PA + PA +PA , (¥-10)
E, (2) 1= (L, +L, + L)+ (LL)
where
Ay =1-( +1L, + 1.,3).+ (LILZ) R (V-11)
b, =1+L, (V-12)
Ay=1+L (V-13)
and

Al} = AS = 1 ® (V""].ll)
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1€ it is aséumed that the system is low-pass with respect to the sampling

frequency, V-10 may be written

E, (2)

E, (2)

= (1/a1)D, (2),6,, (@),

- { (1/n1)D, (2),6,, (2)y, * (1/n2)D,(2) G, (2),,

P

'(1 + (l/n3)D3(z)n3G33(z)n3) + (l/nl)Dl(z)anal(z)n1

(1/23)D,(2)_,6,,(2) . * (1 + (1/n2)D,(2) G, (2),,)

(A/a1)D, () G, (), ° (L/a2)D,(2) .G, (=),

(1/n3)D,(2), .G, 4 (=), = (1/n1)D (=) Gy, (2),,

(1/n3)D3(z)n3G23(z)n3 . (I/nZ)Dz(z)nZGlz(z)nz }

A
{(V-15)
where
A= {1+ (1/n2>32(2)n3622(z)n2) » {1 + (l/nB)Ds(z)n3G33(z)n3)
- (lan)Dz(z)naGsz(z)nz) ¢ (1/n3)D3'(z)n3G23(z)ns . {V=-16)

The above open-loop transfer fumction agrees with the open~loop transfer

function of Appendix F.
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B. Procedure for Determining Open-Loop Poles
From the previous section it is observed that the cofactor, Al’ of
'the P, path will always be equal to the denominator, A, of the open-loop
transfer function for the system opened at the error sampler in any chan~
nel. This is true because there are no closed loops touching on the open
channel. Hence, the open-loop transfer function may always be written

in the form

Ej (2) ' F
an B P¥ o e 5 (V"17)
Eg(z) ' A

where P; is = P1 and F consists of the sums of the remaining paﬁh and
cofactor products.

The poles of (V=175 are the poles of Pi, the poles of F, and the
zeroes of A. For the uncompensated system, the Pi path transfer function
will be entirely due to the plant transfer function which lies in the
open channel feed-forward path. Hence, the poles of the uncompensated
P; path which lie outside the unit circle in the multirate z-plane may
be determined according to {(I11-18).

For the second term on the right of the uncompensated form of
(V=17), it is obseérved that the numerator, F, is a function of all the
plant transfer functions, except the open channel plant transfer func-
vtien, and all of the cross—coupling tramsfer fumctions. Also, the

denominator, A, is a function of all the plant transfer functions, except
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the open channel plant tramsfer function, and all the cross-coupling
transfer functions not assoclated with the open channel. Then the nu~
merator and denominator have common poles, a situation which may be de~

scribed by

A, + A, + -+ A
1 2 q
G = s {V=18)

1+B, +B, +--+B

where the common denominators of the two sums A +A +-—+A and
B, + Bz d - Bk are the same, Multiplying top and bottom of (V—18)
by this common denominator factor cancels out the poles of G due to the
A, A, —, Ak terms [17]. Hence, the poles of G which are due to the
numergtor of (V-18) are the poles due to the Ak+1’ Ak+2’ e Aq terms
only. Likewise, the poles of (V-17) which are due to F are the poleg of
F which are not in common with the poles of A, These polea will be the
poles of the cross—coupling transfer function pairs between the open-
channel and each of the other channels. Again, the number of these poles
which lie outside the unit circle in the multirate z-plane may be deter-
mined by (III-18).

The zeroes of the denominator, A, of (V=17) vwhich lie ocutside the
unlt eircle in the multirate z-plane may be easily determined also, with
the aid of frequency response information. This is due to the fact that

8ll the feedback loope are non-touching and hence, the portion of A in-

volving these loops may be written
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ni-1
job
= (1 + (1/ni) pZO D, (ze )nicu(zej‘?f’)ﬂ) , (V-19)
1¢k

B =B

where k corresponds to the open chanunel. In order to determine the

zeroes of A, one would set it equal to zero. Then, dividing through by

(V=-19), one obtains

1+ H
ni-1
_ jéb ¢
(1 + (1/ai) pZO Dy (23 %) _, 6, , (zed ﬁ)ni)

=0 , (V-20)

h S -

i=1
i#k
where H consists of all the terms of A which remain after forming the
term of (V-19). |

The Nyquist criterion may be easily applied to (V-20) to determine
the zeroes which lie outside the unit circle in the multirate z-plane.
For the uncompensated forﬁ of (V-20), the poles of each of the

ni-1
(1/ni) z Gii(z j¢15)ni terms which lie outside the unit circle may be

p=0
determined by (I1I-18). Given the frequency response for each of the
) ni=1
above terms, the zerces of each of the terms 1 + (1/ni) z Gni(zej¢ﬁ)ni
, p=0

which lie outside the unit circle may be determined by application of
the Nyquist criterion in each case. Equation (III-18) may be applied to
H to determine the number of poles it contains which lie outside the
unit circle. The sum of the number of zeroes and poles thus determined

obtains the numwber of poles of (V-20) which lie outside the unit circle.
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If the frequencyfresponse for H/I is then obtained, where I is the de-
nominator of (V-20), the Nyquist criterion may be applied to determine
the zeroes of(V-20) which lie outaideAthé unit circle. For the compen-
sated system, the procedure is considerably simplified, since it is as-
éumed that the compensation will be such that the denominator of (V-20)
will have no zeroes which lie outside the unit circle.

The methodskpresented in the preceding paragraphs will now be il-
lustrated by again comsidering a three input-three output system of the

~type shown in Figure V-1, with

; - 10 -
6y, (8 (e + 1)(s/10-+ 1) ? (v-21)

' - 10 -
A e e TS N (v-22)

" (g) = 10
O35 e+ D(/12+1)  ° (V-23)
Cofey w ! -
€y (8) = 65, (8) = omp=r 1y (V-24)
G;z(s) = ng(a) = m&m 5 . (V-25)

and
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i

G ,(8) =G, (s) = ’ (V-26)

(/6 + 1)

Also, let T= .1, nl = 2, n2 = 4, and n3 = 8. Let the system be opened
at the error sampler in the first channel. Then the uncompensated open-

loop tramsfer function is of the form of (V-17), where

1
? ’ 4" -
P} = (1/2)p§0cn(ze3 P, . (V=27)

Since G;I(s) has no poles which lie in the right half s-plane, applica-
tion of (111-18) to (V-27) shows that Pi has no poles which lie outside
the unit circle in the zz~planea

Only the poles of F of (V-17) which are due to the cross-coupling
transfer fuﬁction pairs between the first and second channels and the
first and third channels need be considered in determining the poles of
the above uncompensated open-loop transfer function which lie outside
the unit circle. Since nome of these have poles which lie in the right
half s-plane, application of (III-18) shows that F contributes no poles
which lie outside the unit circle.

It is now necessary to determine if the demominator, A, contributes
any zeroés which lie outside the unit circle to the uncompensated open-
loop tranasfer function. From the preceding paragraphs, one would then

form
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am § o @, - @ § o, e,

Lo g 7 p=0 -0 . (v-28)
1+ s ZG NECL oMY
i=2 . p=0

The frequencyvresponse was obtained for each of the terms
(1/4) Z G (zej ﬁ) s (1/8) X G, (zewé)89 and the total second term on
the lzzg of (V-28). This information ig shown in the form of a Nyquist
diagram for each of the terms, in Figure V-2. Since the terms G' (s)
and G' (s) have no poles in the right half s—plane, application of
(I11-18) to (1/4) Z G (zej¢§) and (1/8) X G (zej¢15)8 shows that nei-
ther of these hasngles which lie outsidep:ge unit ecircle. Then, appli-
cation of the Nyquist criterion to Figure V-2 showg that the denominator
of the second term on the left of (V-28) has no zeroes which lie outside
the unit circle. The numerator contributes no such poles, since G;z(s)
and Ggs(s) have mo polesvwhich lie in the right half s-plane. Then,
(V-28) has no zeroces which lie outside the unit circle. It is therefore
concluded for this example that the uncompensated open~loop transfer

\ .
function has no poles whic@ lie outside the unit circle.

C. The Design Procedure.
The objective of the design procedure is to approximately decouple
the system as well as to meet design specifications such as gain margin,
phase margin, and bandwidth. For the two inputmtwé output case, it was

possible to write the open~loop tramsfer function for the system opened
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st the srror-sampler in either channel in the form of the feed-forward
transfer functioﬁ for that chamnel, minus a term which was a function

of the crossécouﬁling’between chaonels. In Part A of this chapter, it
has been shown that for the general n input-n output system, the open~
locop transfer function may be written in the form of the feedﬂforward
transfer function for the open channel, minus a term which is a function
of the cross—coupling betweem all channels. For the»iwo input-two out=
put case, a2 frequency response design technique which utilized the
Nichols chart was developed. This technique can be extended to the n
input-n output case with little difficulty.

For the n input-n output case, the design pchedure will comsider
each of the n controllers individually. The requirements on each con-
troller are to achieve gaiﬁ margin, phase margin, bandwidth, and steady~
state ervor, gegerally, and to effect an approximately decoupled systen.
The last requitement can be thought of as a restficting factor in se~
lacting the compensation in each channel to achieve the usual design
requirements. That is, in considering each of the controllers,; the
system is opened at the error sampler in the channel corresponding to
the'controller under consideration. It is then determined what the re-
quirements are onAthe decoupled open—loop transfer funcﬁion iﬁ order to
achisve gain mafgin, phase margin, etc. The form of the compensation is
determined in iight of the requirements that must be met in order to ap-
prg;imately decouple the system. The requirements for decoupling can be

determined by considering the coupling between the open channel and each
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of the remaining channels, one at a time. The techniques developed for
the two input-two output case can then be applied to each of these
coupled pairs, where the requirements for decoupling for each of these
pairs are determined. The worst case is then taken to be the require~
ment for decoupling on the digital controller under consideration.

The example of the previous section will be utilized to illustrate
the design procedﬁreg For the system described by equa;ions (V-21) -
(V-26) and Figure V-1, it has been shown by the procedure of section B
of this chapter that the uncompensated open-loop transfer function for
the system opened at the error sampler in the first channel has no poles
which lie outside the unit circle in the zz-plane. It can be shown by
application of the same procedure to the uncompensated open-loop transfer
functions for the system opened at the error samplers in the second and
third channels that these open~loop tramsfer functioms have no poles
which lie outside the unit circle in the z, and zg~ Planes respectively.
The computer program of Appendix D was utilized to compute the frequency
response for each of the open-loop transfer functions. These frequency
responses are plotted as Nyquist diagrams in Figures V-3, V-4, and V-35.
In each case, the approximation to the open-loop transfer function and
the tétal open“lodp transfer function havevbeen plotted. Application of
the Nyquist criteriom to each of the dlagrams shows that the uncompen~
sated open—loop transfer functions are stable. However, it is observed
that a strong degree of coupling exzists between channels,

Tﬁe computer program of Appendix E was utilized to obtain a simu-

lation of the system for a unit step forcing function at rl(t)@ The
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results of this simulation are plotted in Figure V=6. It is observed
that the output yl(t) is somewhat oscillatory, with a steady-state error
of approximately 10 per cemt. The remaining two outputs are observed

to have a maximum value of .32, verifving the strong coupling observed
in the f;equency response of Figure V-3.

It will be attempted to design a compensation for each channel so
as to obtain at least a 6 db gain margin and a 30 degree phase margin in
each open-loop transfer function, to obtain a zero steady-—-state error
for a step input in any channel, and to significantly reduce the coupling
between channels. The specification for the compensator Dl(wz) will be
considéred first, The initial step in the design procedure is to obtain
a Bode plot for each of the plant transfer functions and each of the
crosq=coupling transfer functions. These Bode plots are shown in Fig-
ures V-7 through V-10. The open~loop transfer function for the system
opened at the error sampler in the first channel 1is given by (V-15),
where it is assumed that the system is low-pass with respect to the slow-
rate sampling frequency. Imposing this requirement on the specification
of the compensators, it is noted that if the system is approximately
decoupled, the open-loop tramsfer function of (V-15) is approximated by
the first term. The requirements for gain margin, phase margin, and
steady-state error must them be satisfied by this term. To satisfy the
requirement for zero steady-state error for a step input, Dl(wz) must
contein a2 pole at the origin in the wzwplane@ Adding this pole to the

Bode plot for (liZ)Gll(wz), one must then determine the additional poles
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and zeroes necessary to satisfy the gain and phase margin requirements.
These poles and zeroes must be chosen in light of the need to signifi-
. cantly reduce the coupling between channels. The degree of coupling
present in the system will be ascertained by considering the coupling
present between the first and second channels and then, between the
first and third channels. The worst case is then chosen to be the re-
quirement on decoupling for the controller Dl(wz) gnd the specification
of the controller is made according to (IV-55) and (IV-36). That is,
the procedute is reduced to the two input-~two output case of Chapter 1V.
A desired phase margin of at least 30 degrees requires that, when
(1/2)D1(w2)G11(w2) is 0 db, the corresponding phase angle must be no
less than -150 degrees. Figure V-9 shows that the magnitude character—
istic for (1/8)613(w2)u is above the magnitude characteristic for
(1/4)Glz(w2)2. Hence,; the coupling between the first and third channels
will be taken to be stronger than the coupling between the first and
second channels. WNow, if a zero with a break, frequency in the wz—plane
of 7.9 x 10‘2 1s added to the specification of D,(w,), as well as a gain
factor of .997 x 10”2, the approximate compensated open-loop transfer
function will have a phase margin of approximately 40 degrees at a W,
plane frequency of 5 x 102, From the Nichols chart of Figure V-11, the
corresponding magnitude of'(1/2)D1(w2)G11(w2)/(1 + (1/2)D16w2)G11(w2))
is approximately 3.5 db. At the same frequency, (1/2)G11(w2) has a
wagnitude of 13 db, (1/2)G21(w2) has a magnitude of 0 db, and

(1/8)G13(w2)u has a magnitude of =1 db. Then, the magnitude of
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(1/16)D1(wz)Gsl(wz)Gla(wz)“/(l + (1/2)D1(w2)G11(w2)) is -10.5 db. Since
the magnitude of (1/8)G33(w2)h at a w, value of .05 is approximately
13 db, (IV~-56) is reasonably decoupled at this wz—plane frequency.

If a pole with a w2=p1ane break frequency of 7.9 x 10~} is now
added to the specification of Dl(wz)B the approximate open-loop transfer
function will achieve a phase shift of =180 degrees at the wzwplane fre~
quency of .20, with a magnitude of approximately -18 db. From Figure
V-11, the magnitude of (1/2)D1(w2)G11(w2)/(1 + (1/2)D1(w2)G11(w2)) is
approximately -~16 db. For the same wzaplane frequency, (1/2)G11(w2)
has a magnitude of 0 db, (1/2)G21(w2) has a magnitude of -7 db, and
(1/8)G13(w2)u has a magnitude of -4.5 db. Hence, -the magnitude of
(1/16)D, w,)G,, (4,36, (w,) /(L + (1/2)D,(¥,)€,, (,)) 18 ~27.5 db. Com~
pared with the magnitude of approximately .5 db for (1/8)G33(w2)“ at
v, equal to .20, (IV-56) is again found to be reasonably decoupled.

The complete specification of Dl(wz) is then

(.997 x 10-2)(—%% +1)
D,(w,) = - - (V=29)
wz(-“;g- + 1)

This compensation has been tentcatively determined to meet the given re~-
quirements for gain margin, phase margin, steady-state error, and de-~
coupling for the open-loop transfer function for the first chanmel.

Since the Bode plots of Figures V-7 through V-10 indicate that all the
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plant transfer function gain and phase characteristics are relatively
close together and the cross-coupling transfer function characteristics
are also closely the same,_it is expected that the specification of the
remaining_cbmpensgtors may Pe made the same as the specification for
Dl(wz)° This is done by specifying a pole at the origin in the w, and
wswplanea for the respective compensators Dz(wg),and Da(ws)’ The break
freqﬁencies for the remaining pole and zero of nl(wz) are then trans-
formed to the wu=p1ane for Dz('u) and to the wewplane for Ds(wa)’ In
specifying the compensator D1(w2), a phase margin;of 40 degrees was
achieved at a w2~plané frequency of 5 x 10-2, This wz-plane frequency
transforms to a w, ~plane frequency of approximately 2.6 x 102 and a
we-plane.frequencf‘of approximately 1.3 % 10"2, From Figure V-7, it is
observed that a pole at the origin in the wuwplane will contribute an
additional 5.5 db to the approximate open-loop transfer function above
the db gain computed for the wzaplane compensation. A pole at the origin
in the w8=plane contributes an additional 11.5 db. Adjusting the gain
factors for each compensator accordingly, the specificatiqns for Dz(w“)

and Ds(wa) are

W
(.529 x 1072) (—== + 1) .
D (w ) = -039 . (V=30)
2 A
wu(===-+ i)
9

and



125

(.25 x 10“2)(-%—2- + 1)
D, (wg) = - . , (V-31)
w8(~§-+ 1)

To check-the compensation, a frequency response for the compensated
system was computed. The results for the first channel are givenvas a
Myquist diagram in Figure V-12. It is observed that the total compen-
sated open-loop transfer function may be approximated by the
(1/2)D1(w2)G11(w2) term. Also, the gain margin is approximately 19 db
and the phase margin is approximately 35 degrees.

A digital computer simulation of the system was also run for a unit
step forcing function at r;(t). The results of this simulation are given
in Figure V-13. It is observed that y,(t) is much less oscillatory,
with a zero steady-state error. Further, the peak magnitudes of yz(t)
and Y3(t) are .15 and .17, respectively. This is approximately half

the uncompensated magnitudes.
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VI. CONCLUSIONS

A Bode plot design technique for single loop, lineér, multirate
sampled-data systems was presented in Chapter III. The basis of this
techaique is thg transformation from the z,~plane éo the wn«plane. A
relationship for wfiting the wy~form uncompensated open-loop multirate
system transfét function directly was developed. Since application of
the Nyquist criterion to this open-loop transfer function requires that
one determine the number of poles of the open-ldop transfer fﬁnction
which 1i¢ in the right half wn-plane, a procedure was developed by which
the number of such poles may be determined directly from the s~-domain
plant transfer functionm.

It w#s chén shown that the Bode plot for each term of the n-term
sumnation rep;esenting the w,~form uncompensated open-loop transfer
function may be observed directly from the Bode plot for the first term
Qf the sumpation. This observation led to the devélopmgnt of an upper
bound fof the choice of the multirate n. This upper bound is based on
the effect of the magnitudes of the terms beyond_the first term of the
unéompensated open-loop transfer function on the magnitude of the total
sum. Whereas 1t was pointed out that the actual effect of these terms
depends on the phase angle of each term at any particular value of fre-
quency in the s-plane, it was assumed for the purposes of developing thé :

upper bound that all the terms added &irectlye Hence, the upper bound
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developed may be somewhat conservative in actual practice. The assump-
tion made in applying the upper bound is that the compensated openéloop
transfer function will be required to be low-pass with respect to the
slow-rate sampling frequency. |

It was also shown that the Bode plot for the uncompensated open-
loop multirate system transfer function could be obtained directly from
the single-rate open~loop transfer function. This is done by merely
transforming the w-plane frequencies to the corresponding w,-plane fre-
quencies. This procedure is facilitated by means of a 10310tan(6) ve. 0O
template. Combining this procedure with the'upper bound criterion, one
may begin the analysis of the multirate system by considering the equi~
valent slow single’ratg system. The multirate n may be chosen according
to the upper boun& criterion. The Bode plot for the multirate open-loop
tranéfer function may then be drawn from the Bode plot for the single
rate case.

The computation of the multirate system frequency response on the
digital computer is then considered. An infinite series s-domain form
of the multirate system open~loop transfer function is developed for this
pﬁrpose° The advantage of the use of this infinite series form is that
certain numerical inaccuracies, which may occur when the frequency re-
sponse is calculated in the Fn-plane, are avoided.

Finally, a multirate system identity is presented which obtains the
zp~form of the z-transform of the product of a multirate signal with a

continuous plant s~domain transfer funmctionm. This idantity is used to
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determine the multirate system output for a quantization disturbance at
the digital controller output accumulator.

An extension of the method of Povejsil and Fuchs to multirate sam~
pled-data systems was made in Chapter IVf This extension was made first
for the ghree input=three output case for which the fast-rate sampling
is the same in each channel. The method was then extended to the case
for which the fast-rate sampling may not necessarily be the same in each
channel. The various inadequacies of this method as regards multirate
sampled—data systems were pointed out,

The open-loop frequency response design technique for multiple
input-multiple output systems was then presented. This technique is
initially deveioped for the two input-two output, continuous, linear
system. The objective of the technique is to achieve a compensation in
the feed forward path of each channel of the system which apprcximately
decouples the system as much as ﬁecessary and also, achieves the normal
design requireme;ts. It was found that only the open-loop transfer
functions for the system opened at the error signal in gach channel need
be congiderede After developing the open-loop technique for the con-
tinuous case, an example is presented to illustrate the procedure. It
was not the purpose of the example to achieve a best compensation in
the practical dgsign sense, but rather, to illustrate.the design tech~
nique. For this puquse, the results of the example are more than sat-

isfaétorys

The open~loop frequency response technique was then extended to the

sampled-data multiple imput-multiple output system. Initially, the
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single rate, two input-two output case was considered. The technique
was extended then to the multirate case for which the fastarate sampling
in each channel is unequal, but related by an integer. An example was
presented to illustrate the procedure for the multirate case; Again,

it was not attempted to achieve a best design. The results of this ex-
ample again demonstrated the effectiveness of the technique.

The case for systems having more than two inputs and two outputs
was developed in Chapter V. In order that the open-loop technique be
effective for the general case, it was necessary to develop procedures
for obtaining open~loop transfer functions as simply as possible, for
| determining the open-loop poles which 1ie>outside the unit circle in the
multirate z-élane, and for determining the désired compensation. A
three input-three output, multirate system for which the fast-rate sam~-
pling is unequal in eaéh chapnel was utilized to illustrate these pro-
cedures.

It is felt that the open-loop technique is a very effective design
technique for the multiple input-multiple output, multirate sampled-
data system, particularly if it is not neceésary td exactly decouple the
system. Although the technique may be applied to systems having any
number of inputs and outpuis, it is most effective for the cases of two

and three inputs and outputs.
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MULTIRATE SYSTEM FREQUENCY-RESPONSE BY INFINITE SUM

READ(530)01,02:03:,04:,06,07:08,09,Q10
FORMAT{9F 6. 0)

PRINT 5,Q1+02,03:,04,Q6,07,Q8509,Q10
FORMAT{9F 6.0}

FORMAT{1H1y 4X»30HFREQUENCY RESPONSE OUTPUT DATA///TXs
1 4HOMBG s 9Xp 6HABSVAL 912X 2HDB oL LXe.5HPHASE s 14Xs LHW,// )

PRINT 66

COMPLEX TFeSyANUMeDENsHOL s TOTAL2G25515ZGCOMP, AN,

1 ADeXGeG{4)oINeS2
PI=3,.1415927

AR1%10.

TSm,1

N=3

XN=N

OMEG=.005
OMBGS=2,.0#3,1415927/7S
NTILT=2

NX=2oeNTILT+1

DO=-LOOP TO SUM ON P

DO 60 I=1,4N
TFeCMPLX{0,0+0,0)
Pel=]

XP=p

DO~LOOP TO SUM ON J

CO 24 J=1,NX

XJu=NTILT+4=1 :

OMEGL=OMEGH{ XNeXJeXP ) 20OMEGS
S=CMPLX(0.0,0MEGL}
ANUMa{QleS¢l. )8 {Q2eSea2+Q3eS54Q4)
DEN~406¢3*1.30(07¢5+1.)-(0805002409'S+010)
HOLal L, ~CEXP{-TSeS/XN))}/S
TOTAL=XNATS oHOL e ANUM/DEN
TF=TFHTOTAL

G{I)=TF/XN

LaNal

GIL)®CMPLXE0.0450.0)

DO=-L00P TO COMPUTE TOTAL TRANSFER FUNCTION

D0 70 K=1.M
GiL)=GIL) 464K]

K=l

XG=GiK)
ABSV=CABS{XG)
DB=20.#ALOGLO{ABSY)



25

8l

136

PHASEnST.295782ATAN2IAIMAGIXG) sREALIXG) )
THETA=TS*0OMEG
WNeSIN{THETA/N)/{1.+COS{THETA/N))
PRINT25,0MEG,ABSV DB PHASE o WN
FORMATISXoF 592X E13.8,600F9:3¢6XeF9:3¢6XsF10.6)
IFIK.EQ.L)GOD TO 81

K=L .

GO TO 65

CONTINUE

EXITaNeOMEGS/2.

DEL=EXIT/100.

OMEGwOMEG+DEL

IFLOMEG=EXIT) 40t T

sToP

END
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THO INPUT=-THWO OUTPUT, CONTINUOUS SYSTEM FREQUENCY RESPONSE

PRINT 66

66 FORMAT({INL4Xo8HGL]L GAINSX.9HGll PHASE:6XsTHGZ GAIN.6X,
18HG2 PHASEe6XpubHG GAINy TXeTHG PHASE.6Xs THG3 GAlNQ
i 5X,8HG3 PHASE 5%, SHOMEGA)
COMPLEX GOS'CHPLXlel'GzszIZQGZI95119522;6206953
OMBG90.0
D0 300 I=ly301

COMPUTE FEED-FORWARD AND CROSS=COUPLING ELEMENTS

S=CMPLX{0.0,0MEG}

Cl19408(9/8.41s)#(1.=5/8.)/4(5/10.)#8240.195/10.+1,)
. 622%GIl

G1291./7(S/710.41,)

G21a612

Ell=l./{Se{S/1l.541.))

E22#E1ll

COMPUTE 2ND TERM FOR EACH OPEN-LOOP TRANSFER FUNCTION
G28E220G120621/(1.+E22¢622)
COMPUTE TOTAL OPEN~LOOP FREQUENCY RESPONSE

G=E1l1#{Gl1=-G2)

- G3=GlleELL
DB1%20.#ALOGLO(CABS(GL1)}
PHASEL=180./3., 1415900ATAN2lAlHAG(GllioREAL(Gll)i
0B2220.,#ALOG1O(CABS(G2))
PHASE2#180,/3, 161590*ATAN2(AIHAG(GZ)oREAL(GZ)3
CB3220,#ALOG1O(CABS(G) )
PHASE3'180.IB.IQIS?OOATANZ(A!MAG(G)QREAL(GID
D84»20.#ALOGLO(CABS(G3))
PHASEA=1804/3,141590ATAN2(ATMAG(G3 ) ,REAL(G3))
PRINT 5,081 ,PHASEL,DB2,PHASE2,DB3,PHASE3,DB%4, PHASESL ;OMEC

5 FORMAT({2XsE12:592XoFlle592X0E12:5+:2X9Fl1e592XsE12.5,

- 1 2XsF11e592X9E12:552X9F11e5+2X9Fb642)

300 OMEGo0MEG+0.100

sTaop
END
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TWO INPUT-TWO OUTPUT CONTINUOUS

SYSTEM SINULATION
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SIMULQTYGY e ?ud INPUT=TH] JUTPUT SYSTEM WITH CONTINUOUS
COMPENSATARS

DEFINE MACRDO FAR PLANT TRANSFER FUNCTION

ACRD 71=PLANT{K?,C¢DeX1)
SZ2¥=sDR (X=X} =8¥%
SX=INTGRL{ 00, 52X}
X=INTGRL{0 085X}
7l=K2% (=1, /CkS2X+X)

CENDMAC

DEFINE MACRO FOR CRISS=-COUPLING TRANSFER FUNCTION

ECIOD

ACRO Wi=CROSS{B.X1}
SWl=Rk{X1l=~W})
Wl=INTGRL{OQeOpSW1)
ENDMAC ' -
¢
c DEFINZ MACRND FNOR CONTINUOUS COMPENSATION
C : '
MACRN X1=GCOMP({K1l,A.ELl}
S2X1=K1#E]l~-A%*SX]
SX1=INTARL{0e0yS2X1)
X1=INTGRL(O004SX1}
ENDMAC o
PARAMETER A=1.5.B=10.iC=64.'D=100.,K1=1.59K2=4.'K=2o
c ,
C DEFINF CHANNEL ONE
C
R1=STEPI(O0s}
El=K*{R]l-Y1}
X1=GCOMP{KIAsELD
21=PLANT(K2,C,D¢X}}
W1=CRNSS{BeX1)

DEFINE CHANNEL THWO

(s NaRel

R2=0, .

E2=R2=Y2
X2=GCOMP{KIA,E2}
72=PLANT(K2.,C,D,¥2}
W2=CROSSIR,X2)

¥Yi=Zl+¥W2
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Y2=T724W1
TIMER FINTIM=15, {OUTDEL=6l
PRTPLY VYi(v2)
PRTPLY v2{V¥i}

END
R}1=0.0
R2=STEP{ O,
END
sTne

ENDJOB



APPENDIX D
THREE INPUT-THREE OUTPUT MULTIRATE

SYSTEM FREQUENCY -RESPONSE
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THREE INPUT=-THREE OQUTPUT MULTIRATE SYSTEM FREQ RESPUNSE

COMPLEX G5,66567:G8+G9:610:6GAsGB+6C6Ds6E,GF,
L G1,G2,G3
PI = 3,1415927
T8 = ol
OMEG=¢ 005
NL=2
N2=4
N3=8
NA=N1¢1
NB=N2+1
NC=N3¢ 1
OMEGS={PI/TS)%2,
Ql=10.
Qi=4,
G3=15,
Qée=}2e
°5¢6g
XA=¢ 8535
XK=¢ 06009
XB=o1ll7
YA 49249
YK=503950
YB=+,4388
. ZA=¢ 96078
IK=402124%
IB=,606667

4 NTILT=1

COMPUTE FREQ RES FOR FEED FWD AND CROSS=COUPLING
ELEMENTS FOR CHANNEL ONE

CALL FRESINLI-QLsQ2/NTILT yOMEGy OMEGS e TSPl sMAKA XK KB,
1 DBL,PHASEL,DB2,PHASE2,DB3,PHASE3sDB4PHASES+WNL,
1 GA,GB})
PRINT25, 0”5690319PHASEI?DBZQPHASEZQDB39PHASE390357
i PHASE4  WN]
25 FURMA?(1H09Zxg5“0”5539570394K94H61139590394X9F5939
1 4XsE9e3@XsFB863¢2Xs4HG2L3EP0 294X oFBeIebXeETs3:2%,
1 FB8e3:2%+FTs3)

COMPUTE FREQ RES FOR FEED FWD AND CROSS=COUPLING
ELEMENTS FOR CHANNEL TWO

CALL FRESINZ Q3:02,NTILTcOMEG,; OMEGS TS +sPI:NB VA, YK,¥B,
1 DBS,PHASESsDB6,PHASEGDBTPHASET DB, PHASEB HN2,GC +GD}
PR§N73590HEG905599HA$E§90569PHASEéeOB?ePHASE?QQBBQ
L PHASESB ,HN2
35 FORMAT(3X9SHGH5539F?e?sQXQQHGZZ*QEQQ39§XQFBQ39$X9§9339
L 4XoFBe302Xe4HGLl220E9 394K sFBe394XeEDe3:2XeFBa3,2XsF 7o 31
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CCRPUTE FREC RES FCR FEEC FwC AND CROSS=-CCUPLING
ELEMENTS FOR CHARNEL THREE

CARL FRESINI Q4 QSoNTILToCMEGCMEGCS»TS¢PINCe2ZA,2K 2B,
1 DBS¢PHASE9,DBI1O,PHASLIO.DBL16PHASLL1DB12,PHASI2,WA2,
1 GE(6F)
PRINTY ‘5‘0“5690390P"'5559605IOQPHAS].O’DBII.ePHASllsDBlZe
I PHASEZ,WN3

é8 FoRﬂ‘T(SXqQ.'QNEG'oF?e604304H533'059.394X’F8 3147(9599.-5
14X dF 8, 302X JdAMGL IR BT, F AN FEL 34X EDs3¢2RoFB.3:2XsF7:3)

'QC!P07E 2ND TERM FCR EACF CPEN=-LOCP TRANSFER FUNCTICA

C54({EEaCLal1+GE)- 2.-CB¢GC'GF*GB»GF-(1+GC1)/((1+GC)#
1 {1+GE)=GOeGF)
£62{B80*GRe§ 14GE )=~ 2.-GD-GBiGF+GCGGF~(ltGAl)/((1+GA)¢
I (1+6E)-€B#GF)
ET19{CEeGL#l14GA )~ 2.~cs~cc-ca+cF-Ge-(1+Gctx/((1+GA)*
1 (1+GC)~-CB#GC)

COMPUTE TOUAL OPEN-LCOP TRANSFER FUNCTICNS

€8d3GA-CS
€92CL~€C &
€10=GE=G?

CCMPUTE CENCPINATCR FREQUENCY-RESPCNSE

Cla=GC2GF/L14GC )= (14GE)

C24-GE8aGF/(1+GA)» [ 14GE)
£39=-CReGL/L24GAY 2 {14GC)
CBA%20.+4L0G10(CABSI(GL))
PHASER®S7,295TBeATAN2(ATMAG(GL) ,REALIGL) )
CE6=26.90LB8GL0ICABS(G2))
PrASERRS5T.295T8eATAN2(AINAGIG2) REALIG2))

- C8€=28.4ALOGLOMCABS(G3))
PHASEC®S57, 29518"15N2(AlFAG€B3P9REAL1633)
£80=20.28L0GC106CABSIC8))
PHASEC®S57,29578%ATANZ{AINAG(GE) ,REALIGS))
CREn20,24LOGLO{CARS(GS))

PHASEERST, 29573"1‘“2“1“‘5‘693QREAL(GQ)5'
CBR=22Q.#AL@GIOLCARS(GLO})
PHASEESS5T. 2957860 TAN2(AIRAGIGLICO)REALIGLIOL)
PRENT 45(OMEGCBA,PHASEAyDRBJPHASEB,DBC,PHASEC,
I WNLSBA24WN3
45 FORMAT{INGSHOMEGS oFT.392Xs3HC129ED03p2X9FBe342Xs

1 3HG284E9.3+52X{FB.3+2Xe3rGA84EF:3:2X,F8,32X,

I ARWNLIS s F 73928 od-WN289F T3 92X 94HWNIS,FT7,.3)
PRINT 5540MEG,DBC,PFASED,DBEJPHASEE DBF o PHASEF N1,
1 WN2oWA3

55 FORMATEIN BHOMEGSF 7, 392893#6839599392X9589392X9
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1 IHG920E9c3:2XsFBe3+¢2XedrGlC#sE9:3:2XsFBe3s2XakHUNL=,
1 FTud3¢2hiobuih2esFTe2s2XebHAIEFT3)
EXBT=EPECSI2.

CELs=EXIT/160.

LVEGSCVEC4DEL

IFQOMEC-EXET 4447

sTep

END

SUBRCRTINE FRES(NLyCleC2 NTILT,OMEG,OMEGSTSsPIloNeXAh,
I XRX@sCRLJPHASET,DB2,PHASEZ24DB3,PHASE3,CB4,PHASES,
1 WNl¢€A,GB)

COMPLEX €11,G21+935G11PsG21P HOLsT1oT2+5S1s82sZN1oAN,
1 ABsC1lsF1%961491:62{9)9ABsGA3GB
X = PaNTIRT+1

ANEN]

L0 €66 I = 1,N1

Gll = CPPLX{(0.40.)

521 L C”PL‘(O.COQ)

f & (-]

AP#P

£0 24 J = 14NX

*J 8 «ATELT#J=1
CHEGEI2CMEGH(XN#XJeXP ) #CMEGS

£ & CPPLX{(B.,O0MEGL)
Gl11Pe]C./(4S+l.12(S/C1€L.]))
€21P=15/852C2+1,)

Au<4THa /AN

ExGEXPAA)

rOR=¢{1.-81/4S

Y1 % N1/7SokrCLeGLLP

12 = N1/TSeHCAL#G21P

€11 = C11411

€21 & €21472

81 = CPPLXEC.sOMEG)
PSE=24aXPeP I/XN

§2 = CPPEXEC.sPSI)
INI=CEXPES1aTS/XN2S2)
ANSXKed{IN1el.)o{ZN1-XA)

ACA{ IN]l-13a{INL~-2B}

£1 = AN/AD

Pl = CPPLUEC.20.)

EC 48 & 2 J4N]

1 5 Hl4ZNLlws{<NM4])

€11 & Clleplenl

€2i=C21sC1ekl

€l8I)eCl1/7UAN

G261 )+C21 /38N

L =2 NI€L

ELEL) =2CePEXN{0.:0.1}

C2€L) =C¥PEX{0.0.1

EQ 78 8 2 1.kl

GLEL) = GLELIHGIHK]
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70 G2iL) = G2{LI*G2(K}
GAGL(L)
GB=G2(L)
DBl = 20.*ALOGLO(CABS(G1(1)))
PHASEL = 5T,29578%ATAN2({AIMAG(GL{1)),REALIGL(1) )
DB2 = 20,%ALOGLO(CABS(GL{L)}) |
PHASE2 = 57.29578%ATAN2{AIMAG(GL (L} ) (REAL(GLILI}}
DB3 = 20,*ALOGLO(CABS(G2(1)))
PHASE3 = 57029578%ATAN2({AIMAGIG2(1) ) ,REALIG2(1))
DB4 = 20.%*ALOGLO(CABS(G2(L)))
PHASES = 570295T8%ATAN2(AIMAG(G2(L) ) ,REALIG2ILY})
THETA = TS®OMEG
WNL = SIN(THETA/NL)/(1e+COSETHETA/NL))
RETURN «
END
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SIMULATIUON FNR THREE INPUT=THREE JUTPUT SYSTEM WITH DIGITAL
COMPENSATNRS '

UEFINE MACRO FOR PLANT TRANSFER FUNCTION

ZTOCOOCOOO0

ACRQ Zl=PLANT(K20C7P9C1§
220NT==C%x2D0T=D%7¢+K2%D%(C 1
"IDOT=INTGRL{ Qe ¢ 22007
Z=INTGRL{0e . ZDOT)

i1=7
" ENDMAC
c
C DEFINE MACRO FOR CROSS~COUPLING TRANSFER FUNCTION
C

MACRUO W1=CROSSI{B,X}}
SWl=Bx{X1l=Wl}
Wi=INTGRL{0s0oS5W1l)

ENDMAC

c

c DEFINE MACRO FOR 7-FORM DIGITAL COMPENSATION

C

MACRD BleSLoX1=DCOMPI{FL)GleG20AsReSLloXLloXsYKeXKyTA)

Ul=X+F1%S]
Vi=YK*{GLl*Ule+G2%S1)
S1=DELAY{1l,TA,Ul}
Ti=V1+B%X]1 :
Bl=XK* (Tl#Aa%xX1)
X1=DELAY{1.TA,T1)

ENDMAC : _

PARAMETER C=lle s0=10e9E=6e9F=216e96215s 9P=13e9Q=126+R=66vsse
X106+ T=el g NL=29N2=249KL1 =106 yK2=10Qe s K3=106 1 K4=]e s X2=0css0es
S1=20e952=0s s XK= ¢060099A=1e 1B=le s YK=1lo sFl=s1lT79Gil=l0seee
G2==48535sH=le yHK=6039507:53=0s yN3=B3X3=2069S5=Lesocs
SK=p02126467:F220%388sF32,666067:532=49249:G43=3956078

DEFINE CHANNEL ONE

coo

R1=STEP(Qe }
El=RLl=Y}
ElZ=1MPULS{ 0+ T}
Al=ZHOLD{(ELZ,EL}
X=A1
TA=sT/N]L
NOSORT - '
BlLeSls XLQDCUMPQF19619629ApBgSllee‘x QYKQXKH’A§
SORT :
RIZ=IMPULS( Qe s T/N1}
Ci=ZHOLOD{B1Z,BL}
Z1=PLANTI{KL CsDsC1}
W1=CROSS(E,C1)
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C LEFINE CHANNEL TWO

R2=0,
EZ=RZ=-Y2
E27=IMPULS{0e s T}
A2=7HOLN{EZ27:E2)
Y=A2
TB=T/N2
NOSORT
R2sS2¢X2=DCOMP({F1sGLlsG3sAsHS29X2sYsYKeHK, TBY
SORT
B2Z=IMPULS{ 0, T/N2}
C2=7HOLDIB27,B2)
12=PLANTI{K3:P,Q:C2}
W2=CROSSI{E.C2)

OO

DEFINt CHANNEL THREE

R3=0e
ﬁ3=R3-Y3
E3Z=1MPULS{0e o T)
A3=ZHOLDI{E3Z,E3)
I1=A3
TC=T/N3
NOSORT
B3,53sX3 =0COMP{FLlsGileG%sApSeS39X3s73YKeSKsTCH)
SORT ‘
R3Z2=TMPULS{ Qe s T/N3)
C3=7HOLD{(RBR37,B3)
23=pLANT(K3vp999C3)
W3=CROSS{R,C3}
Yi=Zil+W2%¢W3
Y2=Z24¢Wl+W3
Y3=Z3+WleW2
TIMER DELT=e0Ll25,FINTIM=T74, JUTDEL=,0125
METHOD RKSFX
PRTPLT YL{XeX1lsBLloVY2{YX2,82),Y3(7,X3,83}
END
sTop
ENDJOB
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Appendix F

In this appendix, the open-loop transfer function which was devel-
oped in C?apter V for the three input-three output system will also be
developed by direct application of Mason's gain formula to the discfete
signal flow graph for the system opened at the error sampler in the
first channel. This signal flow graph is given in Figure F-1.

The following set of feed-forward patﬁs may be written from the

signal flow graph:

Pl = El - Zl "Yl "‘Ei M (F"'l)
Pp=F =W, -Y¥, -E =W -Y, -F , (F~2)
Py =E ~Wy~Y, -B =Wy -~ ¥, =By =W, ~Y, -E , (F-3)

-y - B, (F-4)

PSEEI”WZ”Ys”ES_WG“'Yl“’E{ ® (F“'S)

The following set of closed loops are also cbtained from the signal

flow graph:
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Figure F-1.

Signal flow graph for three Input~

fhree futput Bystem npened at Ej(z).
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Ly = Ey - Zy =~ Tp = Ey (¥-6)
Ly=Bg =23 =Y3-Ey > (-7
Ly =Ep =Wy = Y3 - B3 =Wy -¥Tp~E , (F-8)

where Lj and L, are non-touching loops. The cofactors, 4, for each of
the above paths are obtained by eliminating the signal flow graph nodes
which touch on the path under consideration, determining t;he remaining
loops, and applying Mason's determinant formula [16]. The cofactors

are:

Ay = 1= (L) +Ly+0Lg) +1; ° L, (F-9)
Ay = 1.-» L (F-10)
Ay = Ay =1 (F-11)
Ag =1-1L, . (F-12)

The system determinant is

A= l- (Ly+Ly+Ly) Ly ° Ly (F-13)
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The total open-loop transfer function may then be written

k] .
EI(Z) (P4, + P5, +PA, + P4, + PSAS)

-y

(F-14)

If it is aésumed that the system is low-pass with respect to the slow-

rate sampling £requency, we may write

E (2)

= (1/k)D; (2), Gy (2)
£, (2) k k

‘{(1/k)D1<z)sz1(=)k « (1/2)D,(2) Gy, (2),
© 1+ (U/m)Dy(2) G33(2) ) + (1/K)Dy(2), G5y (2),
+ (1/m)Dg(2) Gyg(z), « (1 + (1/2)Dy(2),Gyp(2)y)
= (1/%)D1(2) G21(2), - (1/2)D2(2),G52(2),
+ (L/m)Dy(2) G, 4(a)_ = (1/K)D, (=), Gy (2),

. (i/m)Da(z)mGza(Z)m-o (1/2)D,(2) 46, ,(2) }

R .

(F=15)
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where
A= (1+ (1/2)D,(2) 6y (2) )+ (1 + (L/mIDy(2) Gyy(2) )

= (L/2)D,(2) 4Gy, (2),) + (L/mID(2) 6pq(2), (F-16)

NASA-MSFE



